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PREFACE.

IN the following work I have tried to present the

elements of Coordinate Geometry in a manner
suitable for Beginners and Junior Students. The
present book only deals with Cartesian and Polar
Coordinates. Within these limits I venture to hope
that the book is fairly complete, and that no proposi-
tions of very great importance have been omitted.

The Straight Line and Circle have been treated
more fully than the other portions of the subject,
since it is generally in the elementary conceptions
that beginners find great difficulties.

There are a large number of Examples, over 1100
in all, and they are, in general, of an elementary
character. The examples are especially numerous in
the earlier parts of the book.



vi PREFACE.

I am much indebted to several friends for reading
portions of the proof sheets, but especially to Mr W.
J. Dobbs, M.A. who has kindly read the whole of the

book and made many valuable suggestions.

For any criticisms, suggestions, or corrections, I

shall be grateful. ‘
S. L. LONEY.

Rovar HoLroway CoLLrGk ForR WOMEN,
Eanaw, SURREY.
July 4, 1895.

PREFACE TO THE SECOND EDITION.

For the Second Edition the time at my disposal
has only allowed me to correct the misprints that have
been kindly pointed out to me by many correspondents.
Art. 180 has also been rewritten.

June 80, 1896.
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CHAPTER 1

INTRODUCTION.

SOME ALGEBRAIC RESULTS.

1. Quadratic Equations. The roots of the quad-
ratic equation

an’+bx+c=0
may easily be shewn to be
—b+ b —4ac and —b— WP —4ac
2a 2a

They are therefore real and unequal, equal, or imaginary,
" according as the quantity *—4ac is positive, zero, or negative,

i.e. according as b* Z 4ac.

2. Relations between the roots of any algebraic equation
and the coefficients of the terms of the equation.

If any equation be written so that the coefficient of the
highest term is unity, it is shewn in any treatise on Algebra
that

(1) the sum of the roots is equal to the coefficient of
the second term with its sign changed,

(2) the sum of the products of the roots, taken two
at a time, is equal to the coefficient of the thn'd term,

(3) _ the sum of their products, taken three at a time,
is equal to the coefficient of the fourth term with its sign
changed,
and so on.

L. e 1



2 COORDINATE GEOMETRY.
Bx.1. If a and g be the roots of the equation
az3+ bz +c=0, i.e. x’+l—’ z +£=0’
a a
ha =-2 and ap=¢
we have a+f= 2 af=z.

Bx, 2. If a, 8, and v be the roots of the cubic equation
az®+bx?+ cx+d=0,

. b ¢ d
i.e. of W’+‘;¢’ +;.’c+a—0,
b
we have a+ﬁ+1=—;,
¢
p’7+7“+“p=a!
d
and afy= -3

8. It can easily be shewn that the solution of the
equations
ax+by+cz=0,
and 4 + by + 6z =0,
x y 2

iS = = .
bey— b,cl €18, —Cly @by — agh,

Determinant Notation.

4. The quantity ‘Z" Z’ is called a determinant of the
1y Y2

second order and stands for the quantity a,b, - a,b,, so that

Gy Qo) _
b" b, —albﬁ aﬁbv

mxn () [7 §=2x5-4x8=10-10=-3;

(ii) I:?,: ::l:—3x(-6)—(—7)x(—4)=18—28=—10.




DETERMINANTS. 3

@y Gg, g

byy gy Bgleeeeenieinieienininnnne. 1)

€y Cgy G

is called a determinant of the third order and stands for the
quantity

by, by by, b,

C2y C3 €1y G
.e. by Art. 4, for the quantity

0y (byCs — byes) -— ay (Bycs — bycy) + @y (Bicy — byey),
t.e. @y (b4C5 = byta) + g (bsey — bycs) + @ (Brcg — bycy).

6. A determinant of the third order is therefore reduced
to three determinants of the second order by the following
rule:

Take in order the quantities which occur in the first row
of the determinant; multiply each of these in turn by the
determinant which is obtained by erasing the row and
column to which it belongs; prefix the sign + and — al-
ternately to the products thus obtained and add the
results.

Thus, if in (1) we omit the row and column to which a,

b3 3| 4nd this is the

2y C3:

8. The quantity

by, b,
Cyy Cy

a X +ay

belongs, we have left the determinant

coefficient of a, in (2).
Similarly, if in (1) we omit the row and column to which

a, belongs, we have left the determimmtﬁ" 2’ and this
1 3
with the — sign prefixed is the coefficient o a,, in (2).
1, -3, -8
7. Bx. The determinant | -4, &, —6‘
-7, 8 -9
5, -6 -4, -6 -4,5
=1x[g _9|-(—2)x|_7, _9’+(—3)x 7o

={6x(-9)-8x(-6)}+2x{{-4)(-9)-(-7)(-6)}

R -8x{(-4)x8-(-T7)x5}
={-46+48} +2{36 - 42} -8 { - 82+ 85}
=8-12-9=-18,

1—2
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Oy Goy gy By
by, by, by, b
cl’ o” c” c‘
dy, dy, dy, d,

is called a determinant of the fourth order and stands for
the quantity

8. The quantity

bsy by b, {1y b3y by
O X |Cqy Cgy Cq|— Qg X |Cyy Cgy C4
dydydy|  |dydyd,
. byy by, b, by bay by
+ A3 X | €y Cqy Cf| — QX [Cyy Cgy Cgy
dy, dy, d, dy, dy, dy

and its value may be obtained by finding the value of each
of these four determinants by the rule of Art. 6.

The rule for finding the value of a determinant of the
fourth order in terms of determinants of the third order is
clearly the same as that for one of the third order given in
Art. 6.

Similarly for determinants of higher orders.

é. ' A determinant of the second order has two terms.
One of the third order has 3 x 2, ¢.e. 6, terms. One of the
fourth order has 4 x 3 x 2, 1.e. 24, terms, and so on.

10. Bxs. Prove that

5, -8, T

w [3 ‘2|=2s. ) |:i’ _;|=ez. @) |-2, 4, - 8|=-98.
g » 9, 8,-10]
9,817 -a, b ¢

) s, 8, 4|=0. 6) | a -b, e¢|=4abe.
321 . . @ b -c
ahg '

(6) |A, b, f|=abc+2fgh - aft-bg?-ch?,

9 f el ‘ .




ELIMINATION. 5

Elimination.
11. Suppose we have the two equations
G +aY =0 .cccoieiiiiniiinn. (1),
b +0y =0 e (2),

between the two unknown quantities  and y. There must
be some relation holding between the four coefficients a,, a,,
b,, and b,. For, from (1), we have

r_._%
y @
] b,

and, from (2), we have ==-:.

. Yy b,

Equating these two values of g we have

by _ 4
b a’

i.e. Wby —ahy =0 ...uvvinninninninnnns 3).

The result (3) is the condition that both the equations
(1) and (2) should be true for the same values of z and .
The process of finding this condition is called the elimi-
nating of z and y from the equations (1) and (2), and the
result (3) is often called the eliminant of (1) and (2).

Using the notation of Art. 4, the result (3) may be
written in the form |3 3| =0.

by, b,

This result is obtained from (1) and (2) by taking the
coefficients of « and y in the order in which they occur in
the equations, placing them in this order to form a determi-
nant, and equating it to zero. .

12. Suppose, again, that we have the three equations

ax+ay+ag=0............... 1),
b+ by + b2 =0......coceniniis (2),
and CL+ CY+062=0...ccooveniinnnnin (3),

between the three unknown quantities x, y, and z.



6 COORDINATE GEOMETRY.

By dividing each equation by 2 we have three equations
between the two unknown quantities ; and g. Two of

these will be sufficient to determine these quantities. By
substituting their values in the third equation we shall
obtain a relation between the nine coefficients,

Or we may proceed thus. From the equations (2) and
(3) we have
x _ Yy _ 2
bty — byoy sty —bics  bica— by,

Substituting these values in (1), we have

@y (Boty = Byca) + 03 (b — bits) + @ (810 — byer) = 0...(4).
This is the result of eliminating x, y, and z from the
equations (1), (2), and (3).
But, by Art. 5, equation (4) may be written in the form

Oy Ggy Gy
by, b, s
€1y C3y Gy

This eliminant may be written down as in the last
article, viz. by taking the coefficients of x, y, and z in the
order in which they occur in the equations (1), (2), and (3),
placing them to form a determinant, and equating it to
Zero.

=0.

18. Bx. What is the value of a so that the equations .
ax+ 2y +82=0, 2z-38y+4z=0,
and 5z+Ty -82=0 '
may be simultaneously true?
Eliminating z, y, and z, we have

o a, 2, 38
2, -8, 4|=0,
5 17, -8
ie a[(-3)(-8)-4xT7]-2[2x(-8)-4x5]+3[2xT-bx(-38)]=0,
ie. a[-4]-2[-86]+3[29]=0,
8o that a=72+87=l-'—52.

4 4
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14. If again we have the four equations
a2 + Gy + a2 + au =0,
bx + by + byz + bu = 0,
% + 6Y + 62 + cu =0,
and dx+dy+dp+du=0,

it could be shewn that the result of eliminating the four
quantities z, ¥, 2, and w is the determinant

Qyy Gy gy Gy
by by, b5, b,
€1y Cay C3y €4

dl’ d” dﬁ’ d‘

A similar theorem could be shewn to be true for n
equations of the first degree, such as the above, between
n unknown quantities.

It will be noted that the right-hand member of each of
the above equations is zero.

=0.



CHAPTER IL

COORDINATES. LENGTHS OF STRAIGHT LINES. AND
AREAS OF TRIANGLES.

15. Coordinates. ILet OX and OY be two fixed
straight lines in the plane of the paper. The line OX is
called the axis of x, the line OY the axis of y, whilst the
two together are called the axes of coordinates.

The point O is called the origin of coordma,tes or, more
shortly, the origin.
From any point P in the
plane draw a straight line
“parallel to OY to meet OX

in M, , M,
The distance OM is called X' Mz [Ms oM X
the Abscissa,and the distance _ / Py

B P

MP the Ordinate of the point
P, whilst the abscissa and the
ordinate together are called
its Coordinates.

Distances measured parallel to OX are called z, with
or without a suffix, (e.g. ,, #,... &, «”,...), and distances
measured parallel to OY are called y, with or without a
suffix, (e.g. ¥y, Yay.. ¥ ¥'se-.).

If the distances OM and MP be respectively 2 and y,
the coordinates of P are, for brevity, denoted by the symbol
(= 9)-

Conversely, when we are given that the coordinates of
a point P are (x, y) we know its position. For from O we
have only to measure a distance OM (==z) along OX and
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then from M measure a distance #P (=y) parallel to 0Y
and we arrive at the position of the point £. For example
in the figure, if OM be equal to the unit of length and
MP=230M, then P is the point (1, 2).

16. Produce X0 backwards to form the line 0.X’ and
YO backwards to become OY’. In Analytical Geometry
we have the same rule as to signs that the student has
already met with in Trigonometry.

Lines measured parallel to OX are positive whilst those
measured parallel to OX' are negative; lines measured
parallel to OY are positive and those parallel to OY’ are
negative. .

If P, be in the quadrant YOX' and P,M,, drawn
parallel to the axis of y, meet OX' in M,, and if the
numerical values of the quantities OM, and M,P, be a
and b, the coordinates of P are (—a and b) and the position
of P, is given by the symbol (— a, b).

. Similarly, if P, be in the third quadrant X'0Y", both of
its coordinates are negative, and, if the numerical lengths
of OM; and M;P; be ¢ and d, then P; is denoted by the
symbol (- ¢, —d).

Finally, if P, lie in the fourth quadrant its abscissa is
positive and its ordinate is negative.

17. Bx. Lay down on paper the position of the points
(i) (2, -1), (ii) (-8, 2), and (iii) (-2, -3).
To get the first point we measure a distance 2 along OX and then
a distance 1 parallel to OY'; we thus arrive at the required point.

To get the second point, we measure a distance 8 along OX’, and
then 2 parallel to OY.

To get the third point, we measure 2 along OX’ and then
3 parallel to 0Y". :

These three points are respectively the points P,, P,, and Py in
the figure of Art. 15.

18. When the axes of coordinates are as in the figure
of Art. 15, not at right angles, they are said to be Oblique
Axes, and the angle between their two positive directions
0OX and 07, i.c. the angle XOY, is generally denoted by
the Greek letter w.
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In general, it is however found to be more convenient to
take the axes OX and OY at right angles. They are then
said to be Rectangular Axes.

It may always be assumed throughout this book that
the axes are rectangular unless it is otherwise stated.

19. The system of coordinates spoken of in the last
few articles is known as the Cartesian System of Coordi-
nates. It is so called because this system was first intro-
duced by the philosopher Des Cartes. There are other
systems of coordinates in use, but the Cartesian system is
by far the most important.

20. 7o find the distance between two points whose co-
ordinates are given.

Let P, and P, be the two
given points, and let their co-
ordinates be respectively (x,, v,)
and (2,, ¥,).

Draw P .M, and P, M, pa-
rallel to 0Y, to meet OX in
M, and M,. Draw P,R parallel
to 0X to meet M, P, in R.

Then

)

M, M, X

P.R=M M, =0M,— OM,=u—m,
RP, = M\P, = M,P, =y, —y,,
and ¢ P,RP,=:0M,P,=180"—-P,M, X=180°—aw.
‘We therefore have [ T'rigonometry, Art. 164]
P.P2=P,R*+ RP*-2P,R . RP, cos P,RP,
= (2= %)’ + (%1 = ¥a)* — 2 (%1 — %;) (41— ) cos (180° —w)
= 5y = X)1+ (7, — Y91+ 3 (-, ) (7, — 7)) 0B ...(1).

If the axes be, as is generally the case, at right angles,
we have w=90° and hence cos 0=0.

The formula (1) then becomes
PP} = (o — ) + (1 — 42)
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8o that in rectangular coordinates the distance between the
two points (z,, y,) and (z;, ¥,) i8

VE =P+ (7 -yt (2)
Cor. The distance of the point (z,, y,) from the origin

is /z,¥+ y.%, the axes being rectangular. This follows from
(2) by making both «, and y, equal to zero.

21. The formula of the previous article has been proved for the
case when the coordinates of both the points are all positive.'

Due regard being had to the signs of the coordinates, the formula
will be found to be true for all
pointa.

As a numerical example, let
P, be the point (5, 6) and P,
be the point (-7, - 4), so that
we have

=5, y,=6, z,= -1,
and y=—4.

Then
PR=M,0+OM=T+5
= -2+, !

and
RP,=RM, + M,P,=4+6 \&
= =Ya+¥.
The rest of the proof is as in the last article.
Similarly any other case could be considered.

22. To find the coordinates of the point which divides
in @ given ratio (my :my,) the line joining two given points
(@ 1) and (3, 9,)-

o : M M M, X
Let P, be the point (,, g,), P, the point (z,, ,), and P
the required point, so that we have
PP : PP, :: my : m,.
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Let P be the point (x, y) so that if P, M,, PM, and
P,M, be drawn parallel to the axis of y to meet the axis of
zin M,, M, and M,, we have

OM,=2,, M\P,=y,, OM =z, MP=y, CM,=u,,
and MP, =y,
Draw PR, and PR,, parallel to 0X, to meet /P and
M,P, in R, and R, respectively.
Then PR =MM=0M-0M,=x—ux,
PR, = MM,=0M, - OM =z, - x,
RP=MP-MP =y—y,
and RB,P,=M,P,— MP =y, —y.
From the similar triangles P,R,P and PR,P; we have
m, PP _ PR, _x-n

m, “PP,” PR, m-=u
-y (% — %) =my (2 - 2),

ie g T T
my + my
. m _ﬁp_ R,P 3/_.'/1
Again my PP, RP, y,—-y’
so that my (Y — y) = m,(y Y1)
and hence y=w-
my + My

The coordinates of the point which divides P,P, in-
ternally in the given ratio m, : m, are therefore

+ and Ba¥zt MYy
m, +m, m, +m,

If the point @ divide the line P,P, externally in the
same ratio, <.e. so that P,Q : QP, :: m, : m,, its coordinates
would be found to be

X~ TN and DV2 TV
m, —m, oM -my

The proof of this statement is similar to that of the

preceding article and is left as an exercise for the student.
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. Cor. The coordinates of the middle point of the line
joining (z,, y,) to (3, ¥,) are
) '; % and O ;.‘/s .

238. Bx. 1. Inany triangle ABC prove that
AB*+AC*=2 (AD3+D(CY),
where D is the middle point of BC.

Take B as origin, BC as the axis of z, and a line through B per-
pendicular to BC as the axis of y.

Le:)BC:a, so that C is the point (a, O), and let 4 be the point
(2,5 ¥1)-

Then D is the point (g o).

a\3 a\?
Hence  AD'= (z1-§) +y and DO*= (5) .

Henoe 2(4D%+DC%) =3 | z2+y,* - az, + "{I
=2z, + 2y,% - 2az, + a3
Also 4C=(z, - a)’+y%,
and AB’:ZI’-I-QII’.
Therefore AB? 4+ AC?=2z,%+2y,® - 2az, + a3,
Hence ABV+ A(P=2(4D%+DC?).

This is the well-known theorem of Ptolemy.

Bx. 3. ABC is a triangle and D, E, and F are the middle points
of the sides BC, CA, and AB; prove that the point which divides AD
internally in the ratio 2 : 1 also divides the lines BE and CF in
the same ratio.

Hence prove that the medians of a triangle meet in a point.

Let the coordinates of the vertices 4, B, and C be (z,, y,), (s, y),
and (z,, y,) respectively.

The coordinates of D are therefore ’—:’—;—% and _y%y_, .

.. Let G be the point that divides internally AD in the ratio 3: 1,
and let its coordinates be % and 7. ) :

By the last article
Z3+ %y
z_2>< 2 +1xz‘_xl+z,+z,
I T M R

o : y=yl+%:+!ls.
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In the same manner we could shew that these are the coordinates
of the points that divide BE and CF in the ratio 2 : 1.

Since the point whose coordinates are
T+t 2y g YitYatYs
3 3

lies on each of the lines AD, BE, and CF, it follows that these three
lines meet in a point.
This point is called the Centroid of the triangle.

EXAMPLES. I

Find the distances between the following pairs of points.

1. (2, 8) and (5, 7). 2. (4, -7) and (-1, 5).

8. (-8, -2) and (-6, 7), the axes being inclined at 60°,

4, (a, o) and (o, b). 5. (b+c¢, c+a) and (c+a,a+bd).
8. (acosa, asina) and (a cos B, asin g).

. (amy?, 2am;) and (amy?, 2amy).

8. Lay down in a figure the positions of the points (1, —3) and
(-2, 1), and prove that the distance between them is 5.

9. Find the value of z, if the distance between the points (z,, 2)
and (3, 4) be 8.

10. A line is of length 10 and one end is at the point (3, —3);
if the abscissa of the other end be 10, prove that its ordinate must
8or -9.

11. Prove that the points (2a, 4a), (2a, 6a), and (2a+./3a, 5a)
are the vertices of an equilateral triangle whose side is 2a.

12. Prove that the points (-2, -1), (1, 0), (4, 3), and (1, 2) are
at the vertices of a parallelogram.

13. Prove that the points (2, -2), (8, 4), (5, 7), and (-1, 1) are
at the angular points of a rectangle.

14, Prove that the point (-, ) is the centre of the circle
cugu(ms;n;o)mg the triangle whose angular points are (1, 1), (2, 3),
and (-2, 2).

Find the coordinates of the point which

15. divides the line joining the points (1, 3) and (2, 7) in the
ratio 8 : 4.

16. divides the same line in the ratio 8 : —4.

17. divides, internally and externally, the line joining (-1, 2)
to (4, —5) in the ratio 2 : 8.

-3
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18. divides, internally and externally, the line joining (-8, —4)
to (-8, 7) in the ratio 7 : b.

19. The line joining the points (1, ~2) and (-8, 4) is trisected ;
find the coordinates of the points of trisection.

20. The line joining the points (~6, 8) and (8, —6) is divided
into four equal parts; find the-coordinates of the points of section.

21. Find the coordinates of the points which divide, internally
and externally, the line joining the point (z+b, a—b) to the point
(a-b, a+Dd) in the ratio a : b.

22. The coordinates of the vertices of a triangle are e&z;, g'/jl),
(g, yi) and (zy, ¥5). The line joining the first two is divided in the
: k, and the line joining this point of division to the opposite
angular point is then divided in the ratio m : k+I. Find the
coordinates of the latter point of section.

23. Prove that the coordinates, z and y, of the middle point of
the line joining the point (2, 8) to the point (3, 4) satisfy the equation
z-y+1=0.

24. If G be the centroid of a triangle ABC and O be any other
point, prove that

3(G43+GB*+ GC?)=B(C3+CA%+ AB?,
and 0434 OB+ 0C?*=G43+ GB*+ GC?+3G 0%,

25. Prove that the lines joining the middle points of opposite
sides of a quadrilateral and the line joining the middle points of its
diagonals meet in a point and bisect one another.

26. (A, B, C,(D... :).re n points in a plane wtlﬁose coordinates are
(21 ¥1), (%3sY)s (Zgs Yg)y-..e AB is bisected in the point G,; G,C is
b at G, in the ratio 1:2; G,D is divided at G, in the ratio
1:3; G4E at G, in the ratio 1 : 4, and so on until all the points are
exhausted. Shew that the coordinates of the final point 8o obtained are

Zy+ Tyt Tyt ...+ Ty and Y1+Ygt+ys+... +y,‘.
n n

[This point is called the Centre of Mean Position of the n given

points. ]

27. Prove that a point can be found which is at the same
distance from each of the four points

a,i,am,,-‘i,am,i,and'a,a .
my m, % g mmamy T MeMMy

24. 7o prove that the area of a trapezium, i.e. a quad-
rilateral having two sides parallel, is one half the sum of the
two parallel sides multiplied by the perpendicular distance
between them,
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. Let ABCD be the trapezium having the sides 4D and
B( parallel.

Join AC and draw AL perpen-
dicular to BC and CN perpendicular
to AD, produced if necessary.

Since the area of a triangle is one
half the product of any side and the
perpendicular drawn from the opposite angle, we have

area ABCD=AABC + AACD
=4.BC.AL+}.4D.CN
=3} (BC+AD)x AL.

25. 7o find the area of the triangle, the coordinates of
whose angular points are given, the axes being rectangular.
Let ABC be the triamgle
and let the coordinates of its Y
angular points 4, B and C' be
(mn yl): (a:,, :'/z): a'nd (wu :'/s)-
Draw AL, BM, and CN per-
pendicular to the axis of z, and
let A denote the required area. ; i
Then O L N M X
A=trapezium A LNC + trapezium C N M B—trapezium ALMB
=3LN (LA + NC)+3NM (NC + MB)—3}LM (LA + MB),
by the last article,
= % [(“’a -,) (2’/1 +ys) + (“’s )] (ys + %) — (w0 — ) (9 + .'/2)]-
On simplifying we easily have
A=§ (%¥3 — X,V + X373 — XY + X3V — X,Y3),
or the equivalent form
A=§ [“"l (%2~ Yo) + 2 (Y3 — 1) + 25 (3 —%)]'

If we use the determinant notation this may be written
(as in Art. 5)

%, Y1y 1
@3 Yy 1.
5, Yy 1

Cor. The area of the triangle whose vertices are the
origin (0, 0) and the points (x,, ¥,), (#s, ,) is 3 (%19, — 29).-

A=}
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26. In the preceding article, if the axes be oblique, the perpen-
diculars AL, BM, and CN, are not equal to the ordinates y,, y,, and
y3, but are equal respectively to y, sin w, y, 8in w, and y, sin w.

The area of the triangle in this case becomes

38in w {2y, — 2y, + Ty — Ty + T3y — T1Ys}s
Z, Y 1
Zay Y2y 1.
gy Ys» 1

27. In order that the expression for the area in Art. 25 may be
a positive quantity (as all areas necessarily are) the points 4, B, and
C must be taken in the order in which they would be met by a
person starting from 4 and walking round the triangle in such a
manner that the area of the triangle is always on his left hand.
Otherwise the expressions of Art. 256 would be found to be negative.

28. 7o find the area of a quadrilateral the coordinates

ie. 38in wx

of whose angular points are given.
Y
O LR N M X

Let the angular points of the quadrilateral, taken in
order, be 4, B, C, and D, and let their coordinates be

respectively (21, ¥1), (23, ¥1), (s, %), and (x, ¥,).
Draw AL, BM, CN, and DR perpendicular to the axis
of x

Then the area of the quadrilateral
= trapezium ALRD + trapezium DRNC + trapezium CNMB
— trapezium ALMB
=3LR (LA + RD)+3RN(RD+NC)+3NM(NC+ MB)
—~3LM (LA + MB)
=3 {(ora— 1) (Y2 +y) + (205 — ) (Ys + Ya) + (20— 23) (s +9)
— (@ — ) (1 + )}
=3 {(wa — 20) + (s — %) + (Vs — TYs) + (X1~ 2y}
L. 2
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29. The above formula may also be obtained by
drawing the lines 04, OB, OC and OD. For the quadri-
lateral ABCD

=AOBC+ AOCD - AOBA - AOAD.

But the coordinates of the vertices of the triangle OBC
are (0, 0), (@, y») and (23, y;); hence, by Art. 25, its
area i8 }(zy; — 2y,).

So for the other triangles.

The required area therefore
= § [(@ys — 2aa) + (24 — 2Ys) = (2t = 1Y) = (0 —2)]
= § (@2 — xath) + (23 — 23ys) + (@Y = 2Ys) + (21 — 21y) |-
In a similar manner it may be shewn that the area

of a polygon of n sides the coordinates of whose angular
points, taken in order, are

(@15 1)y (2s Ya) (@35 Ys)se--(Xny Yn)
is 3 [(”12’/:‘ ZY) + (Xs — TaYa) + ... + (TnY — T1Yn) |

EXAMPLES. II

Find the areas of the triangles the coordinates of whose angular
points are respectively
1. (1,8),(-7,6) and (5, -1). 2. (0,4), (3,6) and (-8, —2).
3- (5s 2)’ (—9, —3) and (—3, —6).
4, (a,d+c), (a,b—c) and (-a, c).
5. (a,c+a), (a,c) and (-a, c-a).
8. (aoos¢,, bsin ¢;), (a 008 ¢,, bsin ¢;) and (a cos ¢,, b sin ¢y).
7. (amy3, 2amy), (amy?, 2am;) and (amg?, 2amy).
8. {amymy, a(m+my}, {amgms, a (my+mg)} and
{amgmy, a (my+my)}.

9. {aml, ’%} , {am,, "%} and {am,, "—‘:'—‘} .
Prove (by shewing that the area of the triangle formed by them is
zero) that the following sets of three points are in a straight line ;
10. (1, 4), (8, —2), and (-3, 16).
11. (-%.8), (-5,6), and (-8, 8).
12. (a, b+¢), (b, c+a), and (c, a+b).
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Find the areas of the quadrilaterals the coordinates of whose
angular points, taken in order, are
13. (1,1),°(, 4), (5, - 9), and (4, - 7).
14. (-1,6), (-3, -9), (5, -8), and (3, 9).
15. If O be the origin, and if the coordinates of any two points
P, and P, be respectively (z,, y,) and (z,, y,), prove that
: OP, . OP, . 008 P,OPy=2:2,+Y,Y5-

30. Polar Coordinates. There is another method,
which is often used, for determining the position of a point
in a plane.

Suppose O to be a fixed point, called the origin or
pole, and OX a fixed line, called the initial line.

Take any other point P in the plane of the paper and
join OP. The position of P is clearly known when the
angle XOP and the length OP are given.

[For giving the angle XOP shews the direction in which OP is
drawn, and giving the distance OP tells the distance of P along this
direction.]

The angle XOP which would be traced out by the line
OP in revolving from the initial line OX is called the
vectorial angle of P and the length OP is called its radius
vector. The two taken together are called the polar co-
ordinates of P.

If the vectorial angle be 6 and the radius vector be r, the
position of P is denoted by the symbol (r, 6).

The radius vector is positive if it be measured from the
origin O along the line bounding the vectorial angle; if
measured in the opposite direction it is negative.

81. Bx. Construct the 111 the ints (i) (2, 80°
W, (ﬁ'f ?‘fz, 450)1,102;507:: of points (i) ( )
(-3, 330°), (v) (8, ~210°) and (vi)
(-3, -30°).

-3, -

(i) To construct the first poin
let J)e radius vector revolve trorg
OX through an angle of 30°, and
then mark off along it a djstance
equal to two units of lengz. We
thus obtain the point P,. .

(ii) For the second point, the radius vector revolves from OX
through 150° and is then in the position OP;; measuring a distanoe 8
along it we arrive at P,.

22
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(iii) For the third point, let the radius vector revolve from OX
through 45° into the position OL. We have now to measure along
OL a distance - 3, i.e. we have to measure a distance 2 not along OL
but in the opposite direction. Producing LO to P,, so that OP; is
2 units of length, we have the required point P,.

(iv) To get the fourth point, we let the radius vector rotate from
OX through 330° into the position OM and measure on it a distance
-8, i.e. 8 in the direction MO produced. We thus have the point P,,
which is the same as the point given by (ii).

(v) If the radius vector rotate through —210°, it will be in the
position OP,, and the point required is P,.

(vi) For the sixth point, the radius vector, after rotating through
—380°, is in the position OM. We then measure — 3 along it, i.e. 3 in
the direction MO produced, and once more arrive at the point P,.

32. It will be observed that in the previous example
the same point P, is denoted by each of the four sets of
polar coordinates

(8, 150°), (-3, 330°), (3, —210°) and (-3, —30°).

In general it will be found that the same point is given
by each of the polar coordinates
(r, 6), (-, 180° +6), {r, — (360° - 6)} and {—r, —(180° - 6)},
or, expressing the angles in radians, by each of the co-
ordinates

(r, 6), (—7, w+6),{r, —(2r—6)} and {—r, - (v —6)}.

It is also clear that adding 360° (or any multiple of
360°) to the vectorial angle does not alter the final position
of the revolving line, so that (r, 6) is always the same point
as (r, 6 +n.360°), where n is an integer.

So, adding 180° or any odd multiple of 180° to the
vectorial angle and changing the sign of the radius vector
gives the same point as before. Thus the point

[-7 6+ (2n+1)180°]
is the same point as [—r, 6 + 180°], <.e. is the point [, 6].

33. 7o find the length of the straight line joining two
points whose polar coordinates are given.
Let A and B be the two points and let their polar
coordinates be (r,, 6,) and (r,, 6,) respectively, so that
OA=r,0B=r, tX04=0,, and L X0B=0,.
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Then (Trigonometry, Art. 164)
AB*= 04+ 0B*—~204.0B cos AOB
=r2+ 1 - 2ryr, cos (6, — 6,).

34. To find the area of a triangle the coordinates of
whose angular points are given.

Let ABC be the triangle and let (r,, 6,), (r3, 6;), and
(73, 6) be the polar coordinates of
its angular points. v C

‘We have

AABC=A0BC+A0CA B
-AOBA ...... ). A
Now
AOBC=40B. 0C sin BOC
[Z'rigonometry, Art. 198] o X
= dryry8in (6; - 6,).

So AO0CA=30C.0A4sinCOA = §ryry sin (6, - 6,),

and AOAB=304.0Bsin AOB = }ryr,sin (6, - 6,)
=—4rr,8in (6, - 6,).
Hence (1) gives
A ABC =} [ryrgsin (65 - 6,) + vy, gin (6, — 65)
+7yrysin (6, - 6,)]

38. To change from Cartesian Coordinates to Polar

Coordinates, and conversely.

Let P be any point whose Cartesian coordinates, referred
to rectangular axes, are x and y,

and whose polar coordinates, re- Y
ferred to O as pole and OX as
initial line, are (r, ).
Draw PM perpendicular to OX P
so that we have 7
OM=x, MP=y, . MOP =0,
and OP=r. X0 M X
From the triangle MOP we y’
have
2=0M =OP cos MOP=rcos@ ......... 1),
y=MP=O0Psin MOP =rsinf......... (2),

r=0P=NOM*+ MP =NZ+ ¢ ...... 3),
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and

Equations (1) and (2) express the Cartesian coordinates
in terms of the polar coordinates.

Equations (3) and (4) express the polar in terms of the
Cartesian coordinates.

The same relations will be found to hold if P be in any
other of the quadrants into which the plane is divided by
X0X' and YOY'.

Bx. Change to Cartesian coordinates the equations
(1) r=asin0, and (2) #:a*coag.

(1) Multiplying the equation by r, it becomes r*=arsin 6,
i.e. by equations (2) and (3), 23+y2=ay.
(2) Squaring the equation (2), it becomes

r=aeos’g=§(1+oow),

i.e. 2r?=ar+arcos 6,
ie. 2(23+yN)=a /23 + y*+az,
i.e. (222 +2y? — az)¥=a? (z3+y?).

EXAMPLES., III.
Lay down the positions of the points whose polar coordinates are
1. (8, 45°). 2. (-2 -609. 3. (4 135°). 4. (2, 330°).
5. (-1, -1809. 6. (1, -210°. 7. (5 —6759. 8. (a, !).

9. (sa.-g). 10, (—a, 3 11, (-, =)

Find the lengths of the straight lines joining the pairs of points
whose polar coordinates are

12. (3, 30°) and (4, 120°). 18, (-8, 45°) and (7, 105°).

14, (a, 1'2.) and (sa, %)
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15. Prove that the points (0, 0), (3, %) , and (8, %) form an equi-
lateral triangle.

Find the areas of the triangles the coordinates of whose angular
points are

16. (1, 30°), (2, 60°), and (3, 90°).
17. (-3, -380°), (5, 160°), and (7, 210°).

x x 2
18- (—a’, 3), (ao §) N and (—20, _T)'
'Fti:d the polar coordinates (drawing the figure in each oase) of the
poin
19. z=./8, y=1. 20, z=-4/8, y=1. 21. z=-1, y=1.

Find the Cartesian coordinates (drawing a figure in each case) of
the points whose polar coordinates are

22, (5, ’7;) 23, (-5, %) 24. (5, -’Z')

Change to polar coordinates the equations
25. 23+y3=ad. 26. y=ztana. 27. 2*+y*=2az.
28, 2?—-y3=2ay. 29, #*=y?(2a-z). 80. (z*+y?)?=ad(x?-y%).
Transform to Cartesian coordinates the equations
81, r=a. 32. 0=tan=im, 38. r=aoco086.
84. r=asgin 26. 35. r*=a*cos 2. 36. 7*sin 20=2a%.
9
2
40, 7 (cos 30 +8in 38) =5k sin @ cos 6.

87. r2cos 20=a? 38. rHooss=al, 39. r*=a‘sin;.



CHAPTER IIL
LOCUS. EQUATION TO A LOCUS.

36. WHEN a point moves so as always to satisfy a
given condition, or conditions, the path it traces out is
called its Locus under these conditions.

For example, suppose O to be a given point in the plane
of the paper and that a point P is to move on the paper so
that its distance from O shall be constant and equal to a.
It is clear that all the positions of the moving point must
lie on the circumference of a circle whose centre is O and
whose radius is a@. The circumference of this circle is
therefore the ¢ Locus” of P when it moves subject to the
condition that its distance from O shall be equal to the
constant distance a.

37. Again, suppose 4 and B to be two fixed points in
the plane of the paper and that a point P is to move in
the plane of the paper so that its distances from 4 and B
are to be always equal. If we bisect 4B in €' and through
it draw a straight line (of infinite length in both directions)
perpendicular to 4B, then any point on this straight line
is at equal distances from 4 and B. Also there is no
point, whose distances from 4 and B are the same, which
does not lie on this straight line. This straight line is
therefore the ¢Locus” of P subject to the assumed con-
dition.

38. Again, suppose 4 and B to be two fixed points
and that the point P is to move in the plane of the paper
so that the angle APB is always a right angle. If we
describe a circle on AB as diameter then P may be any
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point on the circumference of this circle, since the angle
in a semi-ircle is a right angle; also it could easily be
shewn that APB is not a right angle except when P lies
on this circumference. The “Locus” of P under the
assumed condition is therefore a circle on 4B as diameter.

89. One single equation between two unknown quan-
tities z and y, e.g.

e+y=1.ccoiiiii. 1),
cannot completely determine the values of = and y.
.'rF;
P
PR
i r&
| N
MTTTOM X
&

Such an equation has an infinite number of solutions.
Amongst them are the following :

z=0, z=1, &= 2)} z= 3,
y=l}’ y=0}’ y==1J" y=_2},...

r=- l,} r=-—2,
y= 2J’ y= 3}“'
Let us mark down on paper a number of points whose
coordinates (as defined in the last chapter) satisfy equation
(@)
Let 0X and OY be the axes of coordinates.
If we mark off a distance OP, (=1) along 0Y, we have
a point P, whose coordinates (0, 1) clearly satisfy equation
(1)-
If we mark off a distance OP, (=1) along OX, we have
a point P, whose coordinates (1, 0) satisfy (1).
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Similarly the point P, (2, —1), and P, (3, — 2), satisfy
the equation (1).

Again, the coordinates (— 1, 2) of P; and the coordinates
(=2, 3) of P, satisfy equation (1).

On making the measurements carefully we should find

that all the points we obtain lie on the line P, P, (produced
both ways).

Again, if we took any point @), lying on P P,, and draw
a perpendicular QM to OX, we should find on measurement
that the sum of its « and y (each taken with its proper .
sign) would be equal to unity, so that the coordinates of @
would satisfy (1).

Also we should find no point, whose coordinates satisfy
(1), which does not lie on P, P,.

All the points, lying on the straight line P, P,, and no
others are therefore such that their coordinates satisfy the
equation (1).

This result is expressed in the language of Analytical
Geometry by saying that (1) is the Equation to the Straight
Line P, P,.

40. Consider again the equation

Amongst an infinite number of solutions of this equa-
tion are the following: .

a:=2,}, w=J3}’ x=J2}, z=1 }’

y=00" y=1 |* y=y2 y=u/3

| SR My & FR
e it & S 4 Hy
Y e My T By B
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All these points are respectively represented by the
points P, P,, P, ... Py, and they
will all be found to lie on the

dotted circle whose centre is O P %%r.%
and radius is 2. p %QP
Also, if we take any other & iR
point @ on this circle and its Lo b
ordinate @M, it follows, since B: 0 M B X
OM*+ MQ*=0Q* =4, that the = ) b
and y of the point @ satisfies (1). ?°,§x e
The dotted circle therefore L
passes through all the points whose Ra

coordinates satisfy (1).

In the language of Analytical Geometry the equation
(1) is therefore the equation to the above circle.

41. As another example let us trace the locus of the
point whose coordinates satisfy the equation

If we give x a negative value we see that y is im-
possible ; for the square of a
real quantity cannot be nega-
tive.

‘We see therefore that there
are no points lying to the left
of OY.

If we give = any positive
value we see that y has two
real corresponding valueswhich
are equal and of opposite signs.

The following values,
amongst an infinite number of
others, satisfy (1), viz.

a:=0,} z=1, =2,

y=0J’ y=+2or-—2}’ y=2J2or—2J2}’

z=4 z=16, r=+,

y=+4or—4}’ y=80r—8}’ T y=+ow or—oo}’
The origin is the first of these points and P, and @,

P, and @;, Pyand @, ... represent the next pairs of points.
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If we took a large number of values of xz and the
corresponding values of ¥, the. points thus obtained would
be found all to lie on the curve in the figure.

Both of its branches would be found to stretch away to
infinity towards the right of the figure.

Also, if we took any point on this curve and measdred
with sufficient accuracy its « and y the values thus obtained
would be found to satisfy equation (1).

Also we should not be able to find any point, not lying
on the curve, whose coordinates would satisfy (1).

In the language of Analytical Geometry the equation
(1) is the equation to the above curve. This curve is called
a Parabola and will be fully discussed in Chapter X.

42. If a point move so as to satisfy any given condition
it will describe some definite curve, or locus, and there can
always be found an equation between the x and y of any
point on the path.

This equation is called the equation to the locus or
curve. Hence

Def. Equation to a curve. Zhe equation to a
curve 18 the relation which exists between the coordinates of
any point on the curve, and which holds for no other points
except those lying on the curve.

43. Conversely to every equation between x and y it
will be found that there is, in general, a definite geometrical
locus.

Thus in Art. 39 the equation is z+y=1, and the
definite path, or locus, is the straight line P, P, (produced
indefinitely both ways).

In Art. 40 the equation is 2+ y*=4, and the definite
path, or locus, is the dotted circle.

Again the equation y =1 states that the moving point
is such that its ordinate is always unity, <.e. that it is
always at a distance 1 from the axis of #. The definite
path, or locus, is therefore a straight line parallel to 0X
and at & distance unity from it.
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44. In the next chapter it will be found that if the
equation be of the first degree (i.e. if it contain no
products, squares, or higher powers of « and y) the locus
corresponding is always a straight line.

If the equation be of the second or higher degree, the
corresponding locus is, in general, a curved line.

45. We append a few simple examples of the forma-
tion of the equation to a locus.

Bx. 1. 4 point moves so that the algebraic sum of its distances
Jrom two given perpendicular axes is equal to a constant quantity a;
Jind the equation to its locus.

Take the two straight lines as the axes of coordinates. Let (z, )
be any point eatisfying the given condition. We then have z+y=a.

This being the relation connecting the coordinates of any pomt
on the locus is the equation to the locus.

It will be found in the next chapter that this equation represents
a straight line.

Ex. 2. The sum of the squares of the distances of a moving point
from the two fized points (a, 0) and (- a, 0) is equal to a constant
quantity 2¢3. Find the equation to its locus.

Let (z, y) be any position of the moving point. Then, by Art. 20,
the condition of the question gives

{(z-a)+9°} + {(z +a)* +y°} =2¢%,
i.e. zB+yd=c-al

This being the relation between the coordinates of any, and every,
point that satisfies the given condition is, by Art, 42, the equation to
the required locus.

This equation tells us that the square of the distance of the point

2, y) from the origin is constant and equal to ¢3-a? and therefore
the locus of the point is a circle whose centre is the origin.

Bx. 8. A point moves so that its distance from the point (-1, 0)
is always three times its distance from the point (0, 2).
Let (z, y) be any point which satisfies the given condition. We

then have
V@ I+ - 0P =8/ [z - 0)+ (y - 2P,
so that, on squaring,
22+2c+1+y*=9 (2 +y? -4y +4),

i.e. 8 (z?+y?% -2z - 36y +35=0.

This being the relation between the coordinates of each, and
every, point that satisfies the given relation is, by Art. 42, the
required equation,

It will be found, in & later chapter, that this equation represents
a circle,
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EXAMPLES. IV.

By taking a number of solutions, as in Arts. 39—A41, sketch
the loci of the following equations :

1. 2z+3y=10. 2 dx-y=T. 3. 2%-2ax+y*=0.

4, z?-daz+y®+8ur=0. 5. y*=z. 6. 3z=y*-9.
2 Y

7. 3+5=1

A and B being the fixed points (a, Q) and (- a, 0) respectively,
obtain the equations giving the locus of P, when
8. PA?- PB%=a constant quantity =2k?
9. PA=nPB, n being constant.
10. P4+ PB=c, a constant quantity.
11. PB3+ PC3=2PA4?, C being the point (¢, 0).
12, Find the locus of a point whose distance from the point (1, 2)
is equal to its distance from the axis of y.
Find the equation to the locus of a point which is always equi-
distant from the points whose coordinates are
13. (1, 0) and (0, -2). 14. (2,8) and (4, 5).
15. (a+b, a-d) and (a-b, a+b).
Find the equation to the locus of a point which moves so that

16, its dlstnnoe from the axis of x is three times its distance from
the axis of y.

17. its distance from the point (a, 0) is always four times its dis-
tance from the axis of y.

]{;8' the sum of the squares of its distances from the axes is equal

19. the square of its distance from the point (0, 2) is equal to 4.

20,( lts)dmhnce from the point (8, 0) is three times its distance
from (0, 2

21, its distance from the axis of z is always one half its distance
from the origin.

22. A fixed point is at a perpendicular distance a from a fixed
straight line and a point moves so that its distance from the fixed
point is always equal to its distance from the fixed line. Find the
equation to its locus, the axes of coordinates being drawn through
ltlh: fixed point and being parallel and perpendicular to the given

e.

23, In the previous question if the first distance be (1), always half,
and (2), slways twice, the second distance, find the equations to the
respeotive I




CHAPTER 1IV.

THE STRAIGHT LINE. RECTANGULAR COORDINATES.

46. 7o find the equation to a straight line which 18
parallel to one of the coordinate axes.

Let CL be any line parallel to the axis of ¥ and passing
through a point € on the axis of « such that OC=e.

Let P be any point on this line whose coordinates are
2 and y.

Then the abscissa of the point P is y L
always c, so that P

B=Corrrrrrrrnanne. 1.

This being true for every point on ¢ C X
the line CL (produced indefinitely both
ways), and for no other point, is, by
Art. 42, the equation to the line.

It will be noted that the equation does not contain the
coordinate y.

Similarly the equation to a straight line parallel to the
axisof x is y=d.

Cor. The equation to the axis of  is y=0.

The equation to the axis of y is x=0.

47. To find the equation to a straight line which cuts
off a given intercept on the awxis of y and 8 inclined at a
given angle to the axis of x.

Let the given interoept be ¢ and let the given angle bea.
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Let C be a point on the axis of y such that OC is c
Through C draw a straight
line LCL'inclined at an angle
a (= tan™'m) to the axis of =,
so that tan a =m.

The straight line LCL' is
therefore the straight line
required, and we have to
find the relation between the
coordinates of any point P lying on it.

Draw PM perpendicular to OX to meet in &N a line
through C parallel to OX.

Let the coordinates of P be xz and y, so that OM ==
and MP=y.

Then MP =NP+ MN=CNtana+0C=m.x+c,

t.e. y=mx+cC.

This relation being true for any point on the given
straight line is, by Art. 42, the equation to the straight
line.

[In this, and other similar cases, it could be shewn,
conversely, that the equation is only true for points lying
on the given straight line.]

Cor. The equation to any straight line passing through
the origin, 7.e. which cuts off a zero intercept from the axis
of y, is found by putting ¢ =0 and hence is y =mz.

48. The angle a which is used in the previous article is the
angle through which a straight line, originally parallel to OX, would
have to turn in order to coincide with the given direction, the rotation
being always in the positive direction. Also m is always the tangent
of this angle., In the case of such a straight line as 4B, in the figure
of Art. 50, m is equal to the tangent of the angle X4P #not of the
angle P40). In this case therefore m, being the tangent of an obtuse
angle, is a negative quantity.

The student should verify the truth of the equation of the last
article for all points on the straight line LCL’, and also for straight
lines in other positions, e.g. for such a straight line as 4,B, in the
figure of Art. 59. In this latter case both m and ¢ are negative
quantities.

A careful consideration of all the possible cases of a few proposi-
tions will soon satisfy him that this verification is not always
neoessary, but that it is sufficient to consider the standard figure.
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49. Bx. The equation to the straight line outting off an
intercept 3 from the negative direction of the axis of y, and inclined
at 120° to the axis of z, is

y=xz tan 120°+ (- 8),
i.e. y=-z,/3-38,
i.e. y+2z,/8+8=0.

50. To find the equation to the straight line which cuts
off given intercepts a and b from the axes.

Let 4 and B be on OX and OY respectively, and be
such that 04 =a and 0B =b.

Join AB and produce it in-
definitely both ways. Let P be
any point (x, y) on this straight
line, and draw PM perpendicular
to 0X.

‘We require the relation that
always holds between z and y, so
long as P lies on 4B.

By Euc. VI. 4, we have

oM PB MP AP

94 = 4B’ ™ 93= 15
=1,

OM MP_PB+AP
04T 0BT T 4B

. x y_
z.e. a+5_1.

This is therefore the required equation; for it is the
relation that holds between the coordinates of any point
lying on the given straight line.

81. The equation in the preceding article may be also obtained

by expressing the fact that the sum of the areas of the triangles OPA
and OPB is equal to 04 B, so that

daxy+ibxz=4axb,
and hence Ti¥o
a b

82. Bx. 1. Find the equation to the straight line passing
through the point (3, —4) and cutting off intercepts, equal but of
opposite signs, from the two axes.

Let the intercepts cut off from the two axes be of lengths a and
-a.

L. 3
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The equation to the straight line is then

i.e. T SN ).
Since, in addition, the straight line is to go through the point
(8, — 4), these coordinates must satisfy (1), so that

8- (-4)=q,
and therefore a="T.
The required equation is therefore

z-y="T.

Bx. 2. Find the equation to the straight line which passes through
the point (- 5, 4) and is such that the portion of it between the azes is
divided by the point in the ratio of 1 : 2.

Let the required straight line be 2+ %:1. This meets the axes
in the points whose coordinates are (a, 0) and (0, b).

The coordinates of the point dividing the line joining these
points in the ratio 1 : 2, are (Art. 22)

2.a+1.0 a 2.0+1.b . 2a db
g+1 ¢ gy weg and g
If this be the point (- 5, 4) we have

-5=22 and 4=,

3
8o that a= -3t and b=12.
The required straight line is therefore
=z Y _
it 1=l
i.e. by ~ 82=60.

83. To find the equation to a straight line ¢n terms of
the perpendicular let fall upon it from the origin and the
angle that this perpendicular makes with the axis of .
be Let OR be the perpendicular from O and let its length

»

Let a be the angle that OR makes
with OX.

Let P be any point, whose co-
ordinates are # and y, lying on 4B;
draw the ordinate PM, and also ML
perpendicular to OR and PN perpen-
dicular to ML,
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Then OL=0Mcosa .........cvvvvennnn... (1),
and LR =NP=MPsin NMP.
But tNMP=90"— . NMO =t MOL =a.
LR=MPsina.........ccuuvuun... (2).

Hence, adding (1) and (2), we have
OM cos a+ MPsina=0L + LR=0R=p,
z.e. xcosa+ysina=p.
This is the required equz;.tion.
54. In Arts, 47—53 we have found that the correspond-

ing equations are only of the first degree in « and y. We
shall now prove that

Any equation of the first degree in x and y always repre-
sents a straight line.
For the most general form of such an equation is
Az +By+C=0...ccccuvunuunen... (1),
“where 4, B, and C are constants, i.e. quantities which do
not contain z and y and which remain the same for all
points on the locus.
Let (zy, %), (2, ¥s), and (3, ys) be any three points on
the locus of the equation (1).
Since the point (z;, »,) lies on the locus, its coordinates
when substituted for « and y in (1) must satisfy it.

Hence Az, + By, + C =0 ....coceevnnn..... (2).
So Az, + By, +C=0 ..ccevvvnennnn.n. 3),
and Axy+ Bys+ C=0 ......cvvunennen.. (4).

Since these three equations hold between the three quanti-
ties 4, B, and C, we can, as in Art. 12, eliminate them.
The result is

2, Y, 1
@y Yy 1]|=0 ., (6).
Lgy Y 1

But, by Art. 25, the relation (5) states that the area of the

triangle whose vertices are (z,, ¥.), (%, ¥,), and (2, y,) is
zero,

Also these are any three points on the locus.
3—2
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The locus must therefore be a straight line; for a curved
line could not be such that the triangle obtained by joining
any three points on it should be zero.

88. The proposition of the preceding article may also be deduced
from Art, 47. For the equation

A-‘O+By+0=0
may be written y=-‘—4-:::—g
B” B’
and this is the same as the straight line
y=mz+c,
if m=-% and c=-%,

But in Art. 47 it was shewn that y=mz+c was the equation to
a straight line cutting off an mtercept ¢ from the axis of y and
inclined at an angle tan—'m to the axis of z,

The equation 4z 3 By+C=0
therefore represents a straight line cutting off an intercept —g from

the axis of y and inclined at an angle tan™! (— %) to the axis of x.

56. We can reduce the general equation of the first
degree Ax+By+C=0....cc.ccoovvenenee (1)

to the form of Art. 53.

For, if p be the perpendicular from the origin on g)
and a the angle it makes with the axis, the equation to t
straight line must be

zcosa+ysina—p=0....ccccouue.e. 2).
This equation must therefore be the same as (1).
cosa sina —p

Hence S =B -0
ie g_cm_s_ulg Necos' a + sin? a 1
1;0 - - No+B  JB+ B
ence
cosa= —4 sina'———:B—- and —————.i_
VA B Ny ory - Uk Ny oy

The equation (1) may therefore be reduced to the form (2)

by dividing it by ~/A%+ B® and arranging it so that the
constant term is negative.
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87. Bx. Reduce to the mmdiéular Jorm the equation

ZHYNBHT=0.u e crecrreeeesinennee ).
Here VAT Bi= /T+8=4=2.

Dividing (1) by 2, we have
doty 4=,

i 2(-P+y (- %’)-;ﬂ,
t.e. - z 008 240° + y sin 240° - §=0.
58. To trace the straight line given by an equation of
the first degree.
Let the equation be
Az+ By+C=0.......cc0vuuvn..... (1).

() This can be written in the form
x

Y. _

TorIet
4 "B

Comparing this with the result of Art. 50, we see that it

represents a straight line which cuts off intercepts —-g and

—% from the axes. Its position is therefore known.

If C be zero, the equation (1) reduces to the form
Y|
Yy=- B z,
and thus (by Art. 47, Cor.) represents a straight line
passing through the origin inclined at an angle tan™ (—é

B,
to the axis of . Its position is therefore known.

(B) The straight line may also be traced by fmding
the coordinates of any two points on it.

If we put ¥y=0 in (1) we have w=—§. The point

(-g , 0) therefore lies on it.
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If we put =0, we have y=—%, so that the point

C\ . .
(O, - TS’) lies on it.
Hence, as before, we have the position of the straight
line.
89. Bx. Trace the straight lines

(1) 3z-4y+7=0; (2) Tz+8y+9=0;

8) 3y=z; (4) z=2; (5) y=-2.

Y
6

) /‘(g

(3)

X/b<:7A.AO A, X
@ B,\
(1) Putting y=0, we have z= -,

and putting z=0, we have y=1.
' hﬁ:&suﬁng 04, (= - }) along the axis of z we have one point on
e.

Measuring OB, (=%) along the axie of y we have another point.

Hence 4,B,, produced both ways, is the required line,

(2) Putting in succession y and z equal to zero, we have the
intercepts on the axes equal to — § and - §.

If then 04,= - % and OB,= - §, we have 4,B, the required line.

(3) The point (0, 0) satisfies the equation so that the origin is on
the line.

Also the point (8, 1), i.e. C;, lies on it. The required line is
therefore OCj.

(4) Theline =2 is, by Art. 46, parallel o the axis of y and passes
through the point 4, on the axis of z such that 04,=2.

(56) The line y= - 2 is parallel to the axis of z and passes through
the point B, on the axis of y, such that OB;= - 2.

60. S8traight Line at Infinity. We have seen
that the equation A« + By + C =0 represents a straight line
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which cuts off intercepts _¢ and _¢ from the axes of

A4 B
coordinates.

If A vanish, but not B or C, the intercept on the axis
of z is infinitely great. The equation of the straight line
then reduces to the form y=constant, and hence, as in
Art. 46, represents a straight line parallel to Oz.

So if B vanish, but not 4 or C, the straight line meets
the axis of y at an infinite distance and is therefore parallel
to it.

If A and B both vanish, but not C, these two in-
tercepts are both infinite and therefore the straight line
0.z+0.y+ C=0 is altogether at infinity.

61. The multiplication of an equation by a constant
does not alter it. Thus the equations
22—-3y+5=0 and 10x—15y+25=0
represent the same straight line.

Conversely, if two equations of the first degree repre-
sent the same straight line, one equation must be equal to
the other multiplied by a constant quantity, so that the
ratios of the corresponding coefficients must be the same.

For example, if the equations
a,x +by+¢,=0 and 4,z + By+C,=0
represent the same straight line, we must have

62. To find the equation to the straight line which
passes through the two given points (<, y') and (x”, y").
By Art. 47, the equation to any straight line is

By properly determining the quantities m and ¢ we can
make (1) represent any straight line we please.

If (1) pass through the point (z’, ¥/), we have

Substituting for ¢ from (2), the equation (1) becomes
Y=y =m(X=X)..ccccoceoenrnnnn. 3).
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This is the equation to the line going through (2, y') making
an angle tan~!m with O.X. If in addition (3) passes through
the point (z", ), then

?/N _yl=m (xll _d),
giving m= %’T:_-Z: .
Substituting this value in (3), we get as the required
equation

y-y=L=Lx-x).

638. Bx. Find the equation to the straight line which passes
through the points (-1, 8) and (4, —2).
Let the required equation be
YSME+Coeveveenrreeenernsrnennnnennns ).’
Since (1) goes through the first point, we have
= ~m+c, 8o that c=m+38.
Hence (1) becomes

If in addition the line goes through the second point, we have
-2=4m+m+3, so that m= -1.
Henoe (2) becomes
Yy=-z+2, i.e.z+y=2.
Or, again, using the result of the last article the equation ia

y-3= )(z+1)_-a: 1,

- ( 1
i.e. y+z=2

64. To fix definitely the position of a straight line we
must have always two quantities given. Thus one point
on the straight line and the direction of the straight line
will determine it; or again two points lying on the straight
line will determine it.

Analytically, the general equation to a straight line
will contain two arbitrary constants, which will have to be
determined so that the general equation may represent any
particular straight line.

Thus, in Art. 47, the quantities m and ¢ which remain
the same, 8o long as we are considering the same straight
line, are the two constants for the straight line.




EXAMPLES. 41

Similarly, in Art. 50, the quantities & and b are the
constants for the straight line.

65. Inany equation to a locus the quantities « and y,
which are the coordinates of any point on the locus, are
called Current Coordinates ; the curve may be conceived as
traced out by a point which “runs” along the locus.

EXAMPLES. V.

Find the equation to the straight line

1. cutting off an intercept unity from the positive direction of the
axis of y and inclined at 45° to the axis of z.

2. cutting off an intercept — § from the axis of y and being equally
inclined to the axes.

3. cutting off ‘an intercept 2 from the negative direction of the
axis of y and inclined at 30° to OX.

4. cutting off an intercept — 3 from the axis of y and inclined at
an angle tan—1$ to the axis of z.

Find the equation to the straight line
5. cutting off intercepts 3 and 2 from the axes.
6. cutting off intercepts — 5 and 6 from the axes.

7. Find the equation to the straight line which passes through the
point (5, 6) and has intercepts on the axes

(1) equal in magnitude and both positive,
(2) equal in magnitude but opposite in sign,
8. Find the equations to the straight lines which pass through
the point (1, —2) and out off equal distances from the two axes.

9. Find the equation to the straight line which passes through
the given point (z/, y’) and is such that the given point bisects the
part intercepted between the axes.

10. Find the equation to the straight line which passes through
the point (- 4,-8) and is such that the portion of it between the axes
‘is divided by the point in the ratio 5 : 8.

Trace the straight lines whose equations are

11. z+2y+8=0. 12, 5z-Ty-9=0.

13. 8z+Ty=0. 14. 2z-8y+4=0.

Find the equations to the straight lines passing through the
following pairs of points.

15- (0’ 0) and (2r —2)‘ 16- (3’ 4) and (5: 6)-

17. (-1, 3) and (6, - 7). 18. (0, —a) and (b, 0).
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19. (a,b) and (a+b, a-b).
20. (aty?, 2at) and (aty?, 2az,). 21. (at,, ;1) and (at,, g).

22. (acos ¢, asin ¢,) and (a cos ¢,, a sin ¢,).

23. (acos¢,, bsin ¢,) and (a cos ¢,, dsin ¢,).

24. (asec¢,, btan ¢,) and (asec ¢y, b tan ¢,).

Find the equations to the sides of the triangles the coordinates of
whose angular points are respectively

25. (1, 4), (2, -8), and (-1, -2).

26. (0, 1), (2, 0), and (-1, -2).

27. Find the equations to the diagonals of the rectangle the
equations of whose sides are z=a, z=a/, y=>b, and y="b".

28. Find the equation to the straight line which biseots the
distance between the points (a, b) and éa’, b’) and also bisects the
distance between the points (- a, b) and (a/, - b').

29. Find the equations to the straight lines which go through the
origin and trisect the portion of the straight line 3z+y=12 which
is intercepted between the axes of coordinates.

Angles between straight lines.

66. To find the angle between two given straight lines.

Let the two straight lines be 4Z, and 4 L,, meeting the
axis of z in L, and L,.

Y
A
c
C,
t, ~L O X
I. Let their equations be
y=mx+c, and y=my® +cqoernnnnnn... (1).

By Art. 47 we therefore have
tan AL, X =m,, and tan AL, X =m,.
Now Lt L AL=t AL X -+ AL X.
tan L,AL,=tan[AL, X - AL, X)]
tan AL, X—tan AL, X  my—my
“T+tan AL, X.tan AL, X T1+mm,
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Hence the required angle = L, AL,
=tan-1om——& ... 2).
e 2)
[In any numerical example, if the quantity (2) be a positive quan-

tity it is the tangent of the acute angle between the lines; it negative,
it is the tangent of the obtuse angle.]

II. Let the equations of the straight lines be
A,z+ By+C, =0,
and A,z + By +C,=0.

By dividing the equations by B, and B,, they may be
- written

A, G
y=—Z = 3
and y=— 4, . C, .
2 3
Comparing these with the equations of (I.), we see that
"‘1=—‘il and m =_.AJ
Bl’ 2 ’.
Hence the required angle
4 (_' ‘is)
=tan~1 L _ gant B, B,
Ly 1+<_‘i1) (_A_.
B\ B
B,A, - A,B.
—tan-1 21~ L1l
=tan A4, BB, (3).

III. If the equations be given in the form
zcosa+ysina—p, =0 and xcosB+ysinfB—p,=0,
the perpendiculars from the origin make angles a and B

with the axis of .

Now that angle between two straight lines, in which
the origin lies, is the supplement of the angle between the
Pergendiculars, and the angle between these perpendiculars
is B—a.

[For, if OR, and OR, be the perpendiculars from the origin upon
the two lines, then the poinis O, R,, R,, and 4 lie on a circle, and
hence the angles R,OR, and R,4 R, are either equal or supplementary.)
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. @7. To find the condition that two straight lines may
be parallel.

Two straight lines are parallel when the angle between

them is zero and therefore the tangent of this angle is zero.

The equation (2) of the last article then gives

ml = mg.

Two straight lines whose equations are given in the
“m” form are therefore parallel when their “m’s” are the
same, or, in other words, if their equations differ only in
the constant term.

The straight line 4z+By+ C'=0 is any straight line which is

parallel to the straight line 4z + By+ C=0. For the “m's” of the
two equations are the same.

ain the equation 4 (z— ')+ B (y —y')=0 clearly represents the
sthight line wel‘xlioh passes(throu)g; tlgg pgi'l)lt @, ¥) a.ynd il; parallel to
Az + By+C =0,
The result (3) of the last article gives, as the condition
for parallel lines,
B,4,- 4,B,=0,
4, 4,

t.e. 123

B~ B

68. Bx. Find the equation to the straight line, which passes
through the point (4, - 5), and which is parallel to the straight line

. Bz+4Y+5=0....ccceoovrrirniiininennnnns (1).
. Any straight line which is parallel to (1) has its equation of the
form
B24+4Y+C=0..ccceuvevrrrniceiirnennenns 2).

[For the ‘“m” of both (1) and (2) is the same.]
This straight line will pass through the point (4, - 5) if
3x4+4x(-5)+C=0,

t.e. if C=20-12=8.
The equation (2) then becomes
8z +4y +8=0.

89. To find the condition that two straight lines, whose
equations ars given, may be perpendicular.
Let the straight lines be
Yy=mx+c,,
and Y =maX +C,.
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If 6 be the angle between them we have, by Art. 66,

_m—-m
e Q).

If the lines be perpendicular, then §=90°, and therefore
tanf=oo.

The right-hand member of equation (1) must therefore
be infinite, and this can only happen when its denominator
is zero.

The condition of perpendicularity is therefore that

1+mm=0, ie. mmg=-1.

The straight line y = myx + ¢, is therefore perpendicular

1

to y=mx+a¢, if in,:—"-"—l.

It follows that the straight lines
4,2+ By+C =0 and 4,z +B,y+C,=0,
1

for which m,:—%— and m,=—£3, are at right angles if

1 2
AN [ A
(48
ie if A A, +BB,=0.

70. From the preceding article it follows that the two
straight lines

Ax+By+Ci=0......ccuun.. 1),
and Bx—Ay+Cy=0...ccccuennennn.n. 2),
are at right angles ; for the product of their m’s

-4, B __,

B4 7

Also (2) i8 derived from (1) by interchanging the coefficients
of z and y, changing the sign of one of them, and changing
the constant into any other constant.

Bx. The straight line through (2, ') perpendicular to (1) is (2)
where By - Ay + Cy=0, so that Cy=4,y’ - B,z
This straight line is therefore
B, (z-o) - 4, (y -y)=0.
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71. Bx.1l. Find the equation to the straight line which passes
through the point (4, - 5) and is perpendicular to the straight line

B2 +4Y+5=0..c.cceerrrrterrrerrnrenn. .
First Method. Any straight line perpendicular to (1) is by the
last article
428y +C=00urrreereereereerrrenene @).

[We should expect an arbitrary constant in (2) because there are
an infinite number of straight lines perpendicular to (1).]
The straight line (2) passes through the point (4, - 5) if
4x4-8x(-5)+C=0,

i.e if C=-16-156= -3l.
The required equation is therefore
4z - 3y=381.

Second Method. Any straight line passing through the given
point is
A y-(-b)=m(z-4).
This straight line is perpendicular to (1) if the product of their
mgis -1,

.e. if mx(-§=-1,
t.e. if m=4%.
The required equation is therefore
y+5=4(z-4),
i.e. 4z - 3y =31.
Third Method. Any straight line is y = .
the mean ool y straight line is y =mz+c. It passes through
=8=AmAcaniiniiin (3)
It is perpendicular to (1) if
MmX(—F)=—Liviiiiiiirrrincnncciennne, (4)

Hence m=4 and then (3) gives c=-3.

The required equation is therefore y=4z — 3¢,
i.e. 4z - 3y=381.

[In the first method, we start with any straight line which is
perpendicular to the given straight line and pick out that particular
straight line which goes through the given point.

In the second method, we start with any straight line passing
through the given point and pick out that particular one which is

dicular to the given straight line,

n the third method, we start with any straight line whatever and
determine its constants, so that it may satisfy the two given
conditions. )

The student should illustrate by figures.]

Bx. 2. Find the equation to the straight line which passes through
the point (', y') and is perpendicular to the given straight line
vy’ =2a (z+2’).
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The given straight line is \
vy’ - 2ax — 2az’ =0. v
.. Any straight line perpendicular to it is (Art. 70)
: 2y +2Y + C=0...coverceceviirnreninrenens Q).

This will h in i
straight line m&gthgzoﬁin:g;,g)a:g%'?gg?t,mu be the
i.e. if 2ay’ +z'y’ + C=0,
i.e. if C=-2ay’ -2y’ ’

Substituting in (1) for C the required equation is therefore

2a(ly-y)+y’ (- 2)=0.

72. 7o find the equations to the straight lines which
pass through a given pownt (¢, y') and make a given angle a
with the given straight line y =max + c.

Let P be the given point and let the given straight line
be LMN, making an angle 6
with the axis of « such that

tan 6 =m.

In general (i.e. ex¢ept when
a is a right angle or zero) there
are two straight lines PM R and
PNS making an angle a with
the given line.

Let these lines meet the axis of # in R and § and let
them make angles ¢ and ¢’ with the positive direction of
the axis of x.

The equations to the two required straight lines are
therefore (by Art. 62)

y-y=tan¢x(@—a)...cc............ 1),
and y-y=tane¢' x (—2)....ceoco.onn. (2).
Now ¢=LLMR+ . RLM =a+6,
and ¢'=L LNS+ L SLN=(180°—a)+4.

Hence
tan a + tan @ tana +m
mn¢=tan(a+o>=l—t:natan0=l—;tana’
and tan ¢’ =tan (180° + 6 — a)
tan @ —tana m—tan a
=tan(0-a) = e ftana " T+mtena’

-
¢
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On substituting these values in (1) and (2), we have as
the required equations

m+tana ,
Y=Y mtana ® %)
, m—tana
and y_y=l+mta.na(w—x')'

EXAMPLES. VL

Find the angles between the pairs of straight lines

1. z-y\/8=5 and \/8z+y="T.

3. z-4y=38 and 6z-y=11. 8. y=3¢+T and 3y —z=8.

4, y=(2-./8)x+5 and y=(2+,/8)z-1T.

5. (m?—mn)y=(mn+n%)z+n® and (mn+md)y=(mn-nd)z+ms.

6. Find the tangent of the angle between the lines whose inter-
oepts on the axes are respectively a, — b and 3, —a.

7. Prove that the points (2, - 1), (0, 2), (2, 3), and (4, 0) are the
coordinates of the angular points of a parallelogram and find the
angle between its diagonals.

Find the equation to the straight line

8. passing through the point (2, 3) and perpendicular to the
straight line 4z - 3y=10.

" 9. passing through the point (-6, 10) and perpendicular to the
straight line 7z+8y=>5.

10. passing through the point {2, - 8) and perpendicular to the
straight line joining the points (5, 7) and (-6, 3).

11. passing through the point (-4, — 3) and perpendicular to the
straight line joining (1, 8) and (2, 7).

12. Find the equation to the straight line drawn at right angles to
the straight line ; - %= 1 through the point where it meets the axis
of z.

13. Find the equation to the straight line which bisects, and is
perp:'ndioular to, the straight line joining the points (a, b) and
(a’y ¥').

14. Prove that the equation to the straight line which passes
throuih the point (acos®d, asin®f) and is perpendicular to the
straight line z sec 6 +y cosec 6=a is z cos 6 — y 8in §=a cos 26.

15. Find the equations to the straight lines passing through (2, ')
and respectively perpendicular to the straight lines

zz' +yy' =ad,
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zz’
& +yT{= g
and 2y +ay'=ad

%6, Find the equations to the straight lines which divide, internally
and externally, the line joining (-8, 7) to (5, ~4) in the ratio of 4: 7
and which are perpendicular to this line.

17. Through the point (8, 4) are drawn two straight lines each
inclined at 45° to the straight line z—y=2. Find their equations
and find also the area included by the three lines.

18. Shew that the equations to the siraight lines passing through
the point (3, — 2) and inclined at 60° to th:lﬁino

N3z+y=1 are y+2=0 and y-,/8z+2+8,/8=0.

19. Find the equations to the straight lines which pass through
the origin and are inclined at 75° to the straight line

z+y+a/8(y-2z)=a.

20, Find the equations to the straight lines which pass through
the point (k, k) and are inclined at an angle tan=2m to the straiﬁ:t
line y=mz+ec.

21, Find the angle between the two straight lines 8z=4y+7 and
5y=13x+6 and also the equations to the two straight lines which
pass through the point (4, 5) and make equal angles with the two
given lines.

78. To shew that the point (2, y) 18 on one side or the
other of the straight line Ax+ By+ C =0 according as the
quantity Az’ + By’ + C s positive or negative.

Let LM be the given straight line and P any point
(m' ’ y,)'

Through P draw P@Q, parallel to _Y
the axis of y, to meet the given
straight line in ¢, and let the co-
ordinates of @ be (, ¥").

Since @ lies on the given line, we
have

Ao + By" + C =0,
80 that g =42 1’; G e Q).

It is clear from the figure that P@Q is drawn parallel to
the positive or negative direction of the axis of y according
as P is on one side, or the other, of the straight line LM,
s.e. according as ¢’ is > or < ¢/,

i.e. according as y” — ¥ is positive or negative.
L. 4
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Now, by (1),

yn__yr=__

A +C 1 .
2~y =— 3[4 + By +C]

The point (', ') is therefore on one side or the other of
LM according as the quantity 42’ + By + C is negative or
positive.

Cor. The point (2, ') and the origin are on the same
gide of the given line if 42’ + By’ + Cand 4 x0+Bx0+C
have the same signs, .e. if A2’ + By’ + C has the same sign
as C.

If these two quantities have opposite signs, then the
origin and the point (x', y') are on opposite sides of the
given line.

74. The condition that two points may lie on the
same or opposite sides of a given line may also be obtained
by considering the ratio in which the line joining the two
points is cut by the given line.

For let the equation to the given line be

Ar+By+C=0............lon, (1),
and let the coordinates of the two given points be (x,, ;)
and (x;, ¥,)-

The coordinates of the point which divides in the ratio
m, : m, the line joining these points are, by Art. 22,

Tt My opd T2t T (2).
my + my my + my

If this point lie on the given line we have

A’nlwﬁ"'mixl_'_ B"”l?/a+me.'l/1+0=0
my +my my +my ’
m,_ Ax,+ By, +C
so that e~ dmyt By, x O (3).
If the point (2) be between the two given points (w, 7,)
and (z,, ys,), i.e. if these two points be on opposite sides of
the given line, the ratio m, : m, is positive.

In this case, by (3) the two quantities da, + By, +C
and Awx, + By, + C have opposite signs.

The two points (x,, ;) and (2, y,) therefore lie on the op-
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posite (or the same) sides of the straight line A« + By + C=0
according as the quantities Ax, + By, + C and Awx, + By,+C
have opposite (or the same) signs.

Lengths of perpendiculars.

756. To find the length of the perpendicular let fall from
a given point wpon a given straight line.

(i) Let the equation of the straight line be
xcosa+ysina—p=0............... (1),
so that, if p be the perpendicular on it, we have
ON=p and . XON=a.
Let the given point P be («/, ).
Through P draw PR parallel to the given line to meet
OX produced in R and draw PQ the required perpendicular.

If OR be p’, the equation to PR is, by Art. 53,
Zcosa+ysina—p =0.
Since this passes through the point (z', ¥'), we have
o/ cosa+y' sina—p =0,
so that p =2/ cosa+y sin a.
But the required perpendicular
=PQ=NR=OR-0ON=p'-p
=x'cosa+ysina—p............ 2).

The length of the required perpendicular is therefore
obtained by substituting o/ and y’ for « and y in the given
equation.

(@ii) Let the equation to the straight line be
Az + By +C=0...cceuvvruennnn..nn. (3),
the equation being written so that C' is a negative quantity.

4—2
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As in Art. 56 this equation is reduced to the form (1)
by dividing it by ¥/ 42+ B%. It then becomes
Az By C
= 4 + ——=0.
NI+ B NA+ B NA+ B

Hence
4 sina.———B— and —p= c
varp VR Ry
The perpendicular from the point (', y') therefore
=a/cosa+y sina—p
_Ax'+By’'+C
+
The length of the perpendicular from («', y’) on (3) is
therefore obtained by substituting 2’ and y’ for # and y in
the left-hand member of (3), and dividing the result so
obtained by the square root of the sum of the squares of
the coefficients of x and y.

Cor. 1. The perpendicular from the origin
=04+ B
Cor. 2. The length of the perpendicular is, by Art. 73,

positive or negative according as («, ¥/) is on one side or |
the other of the given line.

76. The length of the perpendicular may also be
obtained as follows :

As in the figure of the last article let the straight line
meet the axes in L and M, so that

c C
OL= -4 and 0M=—§.

Let PQ be the perpendicular from P («, 3') on the
given line and PS and PT' the perpendiculars on the axes
of coordinates.

‘We then have

APML + AMOL=AOLP + AOPH, |

i.e., since the area of a triangle is one half the product of
its base and perpendicular height, |
PQ.LM+OL.OM=0L.PS+0OM.PT. ‘
|

cos a =
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But LM:J(—%)’+(—% VAR o)

since C' is a negative quantity.

Hence
NI+ B c ¢
PQ *"’— ( 0) _A E——-A-X!/+(—E)xx',
so that PQ:AZJ;;BE/; 0,

. EXAMPLES. VII

Find the length of the perpendicular drawn from
1. the point (4, 5) upon the straight line 8z +4y=10.
9, the origin upon the straight line % - %:l. .
3. the point (-8, —4) upon the straight line
12(z+6)=5(y-2).
4, the point (b, a) upon the straight line 2 - %=1.
5. Find the length of the perpendicular from the origin upon the
straight line joining the two points whose coordinates are
(a cos @, agina) and (a cos B, a sin g).
6. Shew that the product of the perpendiculars drawn from the
two points (+ A/a?— b3, 0) upon the straight line
20080+ sin 9=11s 12
7. If p and p’ be the perpendiculars from the origin upon the
straight lines whose equations are z sec 6 +y cosec 6=a and
008 6 -y sin 6=a 00820,
prove that 4p*+p=al.
8. Find the distance between the two parallel straight lines
y=mz+c and y=mz+d.
9. What are the points on the axis of z whose perpendicular
distance from the straight line 'f !—’—lisa?
10 Shew that the perpandmulara let fall from any point of the

ptraight line 2z+1ly=5 upon the two straight lines 24z+ Ty=20
and 4z —-3y=2 are equal to each other. y
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11, Find the perpendicular distance from the origin of the
perpendicular from the point (1, 2) upon the straight line

z—A/8y+4=0.

77. To find the coordinates of the point of intersection
of two given straight lines.

Let the equations of the two straight lines be

ax+dy+e,=0....cocvnnn.e. (1),

and ax + by +ea=0 ..ooiiiiiinin. 2),
and let the straight lines be AL, and 4L, a8 in the figure
of Art. 66.

Since (1) is the equation of 4L,, the coordinates of any
point on it must satisfy the equation (1). So the coordi-
nates of any point on 4L, satisfy equation (2).

Now the only point which is common to these two
straight lines is their point of intersection 4.

The coordinates of this point must therefore satisfy
both (1) and (2).

If therefore 4 be the point (x;, 3,), we have

ax, +by e =0 il 3),
and gy + b+ =0 i, (4).
Solving (3) and (4) we have (as in Art. 3)
[ % 1

by — by, - €\0q = oy N ab, - ahy’
so that the coordinates of the required common point are
b_lce —_bscl €18 — Cey .
ayby—ash, ayby—ash,
78. The coordinates of the point of intersection found
in the last article are infinite if
ayby — ah, = 0.
But from Art. 67 we know that the two straight lines
are parallel if this condition holds.

Hence parallel lines must be looked upon as lines whose
point of intersection is at an infinite distance.




CONCURRENCE OF STRAIGHT LINES. 55

79. To find the condition that three straight lines may
meet in a poind.
Let their equations be

ax+by+6=0.ccoccciiiiininnna. (1),
a4+ by +eg=0...ccoieiiiiiini. 2),
and a+ by + =0l (3).

By Art. 77 the coordinates of the point of intersection

of (1) and (2) areb ;
103 — 040 G183y — Csh
.= agb, and by —agh, (4).
If the three straight lines meet in a point, the point of
intersection of (1) and (2) must lie on (3). Hence the
values (4) must satisfy (3), so that
bics — by €18y — C30
“ba, " b e,

i6 ay (Biey— by)) + b5 (61083 — €3) + 05 (a:dy — ahy) =0,
t.6. @y (Dyes — byey) + by (685 — €3a5) + €; (@gdy — ash;) = 0... (B).

Aliter. If the three straight lines meet in a point let
it be (z,, v,), so that the values x, and y, satisfy the
equations (1), (2), and (3), and hence

iy + byyy +¢,=0,
agy + by, + ¢y =0,
and a2y + bgy, + ¢3=0.

The condition that these three equations should hold
between the two quantities x, and ¥, is, a8 in Art. 12,
a, by, o
gy by,
as; by, ¢
which is the same as equation (5).

80. Another criterion as to whether the three straight
lines of the previous article meet in a point is the following.

If any three quantities p, ¢, and » can be found so
that

P(ax+ by +6) + q(age + by + ¢;) + 7 (agz + by +¢5) =0
tdentically, then the three straight lines meet in a point,

+c:=0,

=0,
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For in this case we have

a,w+b,3/+c,=—?;: (o + b,y+c,)—%(a,z+bg/+c,) (1)

Now the coordinates of the point of intersection of the
first two of the lines make the right-hand side of (1) vanish.
Hence the same coordinates make the left-hand side vanish.
The point of intersection of the first two therefore satisfies
the equation to the third line and all three therefore meet
in a point.

8l1. Bx. 1. Shew that the three straight lines 2x-3y+5=0,
3z+4y - 7=0, and 9z —5y+8=0 meet in a point.

If we multiply these three equations by 6, 2, and —2 we have
identically
6 (22 - 3y + 5)+2 (82 + 4y - 7) - 2 (92 — by +8) =0.
The coordinates of the point of intersection of the first two lines
make the first two brackets of this equation vanish and hence make
the third vanish. The common point of intersection of the first two

therefore satisfies the third equation. The three straight lines
therefore meet in & point.

Bx. 2. Prove that the three perpendiculars drawn from the
vertices of a triangle upon the opposite sides all meet in a point.

Let the triangle be 4BC and let its angular points be the points
(%1, 1) (%3, y), a0A (25, y5).

The equation to BC is y -y, =Z‘3_i:(z—z,).
g —
The equation to the perpendiouls.r from 4 on this straight line is
Y-n= "y y’ (z-=z)
ie. Y Ws—Ys) +2 (T3~ To) =4 (Y5~ Ya) + 21 (T3 Tg)......... ®-

8o the perpendiculars from B and C on C4 and 4B are
Y 01—y +2 (@ - 2) =y (41— ¥a) + %3 (3 = ). @,

and Y (Ya— 1)+ (T~ ) =y3 (Yo — y1) + 25 (B~ &) oo (8).
On adding these three equations their sum identically vanishes.
The straight lines represented by them therefore meet in & point.

This point is called the orthocentre of the triangle.
82. To find the equation to any straight line which
passes through the vitersection of the two straight lines
ax+by+e=0 .oiiiernninn.n. 1),
and aZ +by + =0 ...ooiinnnnnnnnn. (2).
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If (x,, ) be the common point of the equations (1)
and (2) we may, as in Art. 77, find the values of «, and y,,
and then the equation to any straight line through it is

y-ph=mx-a),
where m is any quantity whatever.
Aliter. If A be the common point of the two straight

lines, then both equations (1) and (2) are satisfied by the
coordinates of the point 4.

Hence the equation
ax + by +6 + XN(ax+ by +¢)=0.........(3)

is satisfied by the coordinates of the common point 4,
where A is any arbitrary constant.

But (3), being of the first degree in = and y, always
represents a straight line.

It therefore represents a straight line passing through 4.

Also the arbitrary constant X may be so chosen that (3)

may fulfil any other condition. It therefore represents
any straight line passing through 4.

838. Bx. Find the equation to the straight line which passes
through the intersection of the straight lines

2z -8y +4=0, 3zx+4y-5=0.................. ),
and is perpendicular to the straight line
6z —Ty+8=0...cccccoceveeirrrnrirrrnnnnne (2).

Solving the equations (1), the coordinates z,, y, of their common
point are given by
z - % - 1 =4
(—3)(-6)-4x4 4x3-2x(-5) 2x4-3x(-3) "
so that o= -4 and y,=4%}.

The equation of any straight line through this common point is

therefore
y-H=m(z+h).
This straight line is, by Art. 69, perpendicular to (2) if
mx$=-1, ie. if m=-J.
The required equation is therefore
y‘*?-_. - %(x'*'l"l),
i.e. 119z 4 102y =125.
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Aliter. Any straight line through the intersection of the straight
lines (1) is
2x -8y +4+X\ (3z+4y - 5)=0,

ie. (2+8N) 2+y (4N =3)+4~BA=0.....0euvenenene. 3).
This straight line is perpendicular to (2), if
6(2+3\) -7 (41 -3)=0, (Art. 69)
i.e. if A=13.

The equation (3) is therefore

z(2+18) +y (4 - 3) +4 - 3¢=0,
ie. 119z + 102y - 126=0.

Bisectors of angles between straight lines.

84. To find the equations of the bisectors of the angles
between the straight lines

ax+by+e=0 ..ol 1),
and A+ by +3=0 ....iovinninni. (2).

Let the two straight lines be 4L, and 4L,, and let the
bisectors of the angles between them be 4./, and 4X,.

Let P be any point on either of these bisectors and
draw PN, and PN, perpendicular to the given lines.

The triangles PAN, and PAN, are equal in all respects,
so that the perpendiculars PN, and PN, are equal in
magnitude.

Let the equations to the straight lines be written
so that ¢, and ¢, are both negative, and to the quantities

Ja? + b2 and /a2 +b,? let the positive sign be prefixed.
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If P be the point (A, k), the numerical values of PN,
and PN, are (by Art. 75)

wh+ bk + ¢, and M%—c,' ........ wo(1).
Jai+5? ~/ ay’ + b,

If P lie on AM, ie on the bisector of the angle
between the two straight lines in which the origin lies, the
point P and the origin lie on the same side of each of the
two lines. Hence (by Art. 73, Cor.) the two quantities (1)
have the same sign as ¢, and ¢, respectively.

In this case, since ¢, and c, have the same sign, the
quantities (1) have the same sign, and hence

ah+bk+e ah+bk+ey
== - =+ —_————"
Jai+ 5! NVagd + b2
But this is the condition that the point (A, £) may lie on
the straight line
az+by+ea ax+by+ao
Jai+b2  Naf+bp '
which is therefore the equation to 4M,.

If, however, P lie on the other bisector 4.M,, the two
quantities (1) will have opposite signs, so that the equation
to AM, will be

ax+by+e  ax+by+e
Val+ b} Vaj + b2 :

The equations to the original lines being therefore
arranged so that the constant terms are both positive (or
both negative) the equation to the bisectors is

g,x+bly+c,_+§g+bq+g,

= - ’

a,"+ by ey’ +by

the upper sign giving the bisector of the angle in which
the origin lies.

88. Bx. Find the equations to the bisectors of the angles
between the straight lines

82z-4y+7=0 and 12z- by -8=0.

Writing the equations so that their constant terms are both
positive they are

8z-4y+7=0 and —12z+ 5y +8=0.
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The equation to the bisector of the angle in which the origin lies

is therefore
8z-4y+7_-12z+5y+8
vErS  JitE
ie. 13 (8z -4y +7) =56 (- 12z + by +8),
i.e. 99z ~ 7Ty + 61=0.
The equation to the other bisector is
8z-4y+7_ -12z+6y+8

NI+ 122458
i.e. 13 (8z -4y +17) +5 (- 122+ 5y +8)=0,
ie. 212+ 27y - 181=0.

86. It will be found useful in a later chapter to have

. the equation to a straight line, which passes through a

given point and makes a given angle § with a given line, in
a form different from that of Art. 62.

' Let 4 be the given point (h, k) and Z'AL a straight

line through it inclined at an

angle 0 to the axis of x.

Take any point P, whose
coordinates are (x, y), lying on
this line, and let the distance
AP be r.

Draw PM perpendicular
to the axis of z and AN perpendicular to PM.

Then x—h=AN=AP cos 6=rcosb,
and y—k=NP=APsgin 0=rsin 6.

x-h y-k

H = -} 1).

enee cos®  sin @

This being the relation holding between the coordinates
of any point P on the line is the equation required.

Cor. From (1) we have
2=h+rcosf and y=£k+rsiné.
The coordinates of any point on the given line are
therefore h+rcosf and k+7sin6.
87. To find the length of the straight line drawn
through a given point in a given direction to meet a given
straight line.
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Let the given straight line be
Az+ By +C=0.....cccuvuvun.n... (1).

Let the given point 4 be (h, k) and the given direction
one making an angle 8 with the axis of «.

Let the line drawn through A4 meet the straight line
(1) in P and let AP be r.

By the corollary to the last article the coordinates
of P are

h+7rcosd and k+rs&in .
Since these coordinates satisfy (1) we have
A(h+rcosf)+B(k+rsinf)+C=0.
Ah+ Bk+C

giving the length 4 P which is required.

Cor. From the preceding may be deduced the length
of the perpendicular drawn from (4, &) upon (1).

For the “m” of the straight line drawn through A4 is

tan 6 and the “m” of (1) is —%.

This straight line is perpendicular to (1) if
tan 0 x (—% =-1,

.. B
s.e. if tan0=z,
cosf sinf 1
so that T_T=,/A’+.B”
and hence
. A*+ B
Am0+351n0=VA’+B=JA’+F.

Substituting this value in (2) we have the magnitude
of the required perpendicular. )

EXAMPLES. VIIL

Find the coordinates of the points of intersection of the straight
lines whose equations are

1. 2-3y+5=0 and Tz+4y=3.
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Qs

y_ y_
+b_1 agd +a—l'

a a
., y=mz+— and y=mr+ —.
3. y=m m, y=myz m,

4, zcosg, +ysing,=a and z cos ¢,+ysin g,=a.

5. Two straight lines cut the axis of z at distances a and — a and
the axis of y at distances b and b’ respectively ; find the coordinates
of their point of intersection.

6. Find the distance of the point of intersection of the two

straight lines
92— 8y+5=0 and 3z+4y=0
from the straight line :
bz - 2y=0.

7. Shew that the perpendicular from the origin upon the

straight line joining the points
(2 008 a, @ 8in a) and (a cos B, a sin B)

biseots the distance between them.

8. Find the equations of the two straight lines drawn through

the point (0, a{]on which the perpendiculars let fall from the point
(2a, 2a) are each of length a.

Prove also that the equation of the straight line joining the feet
of these perpendiculars is  y+2z=>5a.

9. Find the point of intersection and the inclination of the two
lines )

Az+By=A+B and 4 (z-y)+B(z+y)=2B.
10. Find the coordinates of the point in which the line
i 2y -3x+7=0

meets the line joining the two points (6, — 2) and (-8, 7). Find also
the angle between them.

11. Find the coordinates of the feet of the perpendiculars let fall
from the point (5, 0) upon the sides of the triangle formed by joining
the three points (4, 8), (-4, 3), and (0, —5); prove also that the
points 80 determined lie on & straight line.

12. Find the coordinates of the point of intersection of the

straight lines
2z -38y=1 and by-2=3,
and determine also the angle at which they out one another.
13. Find the angle between the two lines.
8z+y+12=0 and z+2y-1=0.
Find also the coordinates of their point of intersection and the

equs.tic;na of lines drawn perpendicular to them from the point
(8, -9).
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14. Prove that the points whose coordinates are respectively
(5, 1), (1, -1), and (11, 4) lie on a straight line, and find its intercepta
on the axes. -

Prove that the following sets of three lines meet in a point.
15. 2z-8y=T, 3z-4y=13, and 8z -11y=383.
16. 3z+4y+6=0, 62+5y+9=0, and 3z +3y+5=0.
17. f_,_!! =1, 3+g=1 and y==z.
18. Prove that the three straight lines whose equations are
15z - 18y +1=0, 122+10y - 3=0, and 6z+ 66y - 11=0
all meet in & point.

Shew also that the third line bisects the angle between the other
two.

19, Find the conditions that the straight lines
. =mz+ay, Yy=m@+ay, and y=myT+a,

may meet in a point.

Find the coordinates of the orthocentre of the triangles whose
angular points are

20. (0,0), (2, -1), and (-1, 3).

21. (1,0), (2, -4), and (-5, -2).

22. In any triangle 4 BC, prove that

(1) the biseotors of the angles 4, B, and C meet in a point,

(2) the medians, i.e. the lines joining each vertex to the middle
point of the opposite side, meet in a point,
and (3) the straight lines through the middle points of the sides
perpendicular to the sides meet in a point.

Find the equation to the straight line passing through
23. the point (3, 2) and the point of intersection of the lines
2z+3y=1 and 8z-4y=6.

24. the point (2, — 9) and the intersection of the lines
2z + 5y -8=0 and 3z -4y=386.

25. the origin and the point of intersection of

o z-y—-4=0 and Tz +y+20=0,

proving that it biseots the angle between them.

26. the origin and the point of intersection of the lines
T4y
a + b
27. the point (a, b) and the intersection of the same two lines.
28. the intersection of the lines
z-2y-a=0 and z+3y-2a=0

=1and 2+¥=
b a
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and parallel to the straight line
82+ 4y =0.
29. the intersection of the lines
2+2y+38=0 and 3z+4y+7=0
and perpendicular to the straight line .
y-x=8.
80. the intersection of the lines
82-4y+1=0 and 5z+y-1=0
and cutting off equal intercepts from the axes.
81. the intersection of the lines
2z -3y=10 and z+2y=6
and the intersection of the lines
16z - 10y =383 and 12z + 14y +29=0.
32. If through the angular points of a triangle straight ljnes be
drawn parallel to the sides, and if the intersections of these lines be

joined to the opposite angular points of the triangle, shew that the
joining lines 8o obtained will meet in a point.
33. Find the equations to the straight lines passing through the
point of intersection of the straight lines
Az+By+C=0 and 4'z+By+C'=0 and
(1) passing through the origin,
(2) parallel to the axis of y, :
(3) outting off a giver distanoe a from the axis of y,
and (4) passing through a given point (2, ¥').
84. Prove that the diagonals of the parallelogram formed by the
four straight lines
NB8z+y=0, /3y +z=0, \/3z+y=1, and \/3y+z=1
are at right angles to one another.

85. Prove the same property for the parallelogram whose sides
are

§+%=1, §+%=1, §+%=2, and §+ %=2.

86. One side of a square is inclined to the axis of « at an angle «
and one of its extremities is at the origin; prove that the equations
to its diagonals are

9 (cos a ~ 8in a) =z (sin a+ cos a)
and v (sin a+cos a) + = (Co8 a — 8in a) =a.

Find the equations to the straight lines bisecting the angles
between the following pairs of straight lines, placing first the bisector
of the angle in which the origin lies.

87. z+ya/3=6+2,/3 and z-y./8=6-2,/8.
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38. 12z+5y—4=0 and 8z+4y+7=0.
39. 4x+3y-7=0 and 24z+Ty-81=0.
40. 2z+y=4 and y+3x=5.
4
41. y—b=1_2;mm,(x—a) and y-—b=1?’:‘,’(z-a).
Find the equations to the bisectors of the internal angles of the
triangles the equations of whose sides are respectively
492, 3x+4y=6, 12z by=3, and 4z -3y+13=0.
43. 38z+56y=15, z+y=4, and 2z +y=6,

44, Find the equations to the straight lines passing through the
foot of the perpendicular from the point (k, k) upon the straight line
Az +By+C=0 and bisecting the angles between the perpendicular
and the given straight line. *

45, Find the direction in which a straight line must be drawn
through the point (1, 2), so that its point of intersection with the line
z+y=4 may be at a distance 3,/6 from this point.




CHAPTER V.

THE STRAIGHT LINE (confinued).
POLAR EQUATIONS, OBLIQUE COORDINATES.
MISCELLANEOUS PROBLEMS. LOCL

88. 7o find the general equation to a straight line in
polar coordinates.

Let p be the length of the perpendicular OY from the
origin upon the straight line, and
let this perpendicular make an
angle a with the initial line.

Let P be any point on the
line and let its coordinates be
and 6.

The equation required will
then be the relation between r, 6, p, and a.

From the triangle OYP we have
p=rcos YOP=rcos (a—60)=rcos (6 — a).
The required equation is therefore
rcos (6 —a)=p.

[On transforming to Cartesian coordinates this equation becomes
the equation of Art. 53.]

89. 7o find the polar equation of the straight line
Joining the points whose coordinates are (ry, 6,) and (ry, 05).
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Let 4 and B be the two given points and P any point
on the line joining them
;vhose coordinates are r and 5
Then, since
A AOB=A AOP + A POB,
we have (o] X
4rrysin AOB =4} ryrsin AOP + }rrysin POB,
z.e. 7ry738in (6, — 0,) = 7,7 8in (6 — 6,) + rrysin (6, 0),
sin (6, - 6,) _ sin (0 - 6,) N sin(0,—0).

r T3 n

z.e.

OBLIQUE COORDINATES.,

90. In the previous chapter we took the axes to be
rectangular: In the great majority of cases rectangular
axes are employed, but in some cases oblique axes may be
used with advantage.

In the following articles we shall consider the proposi-
tions in which the results for oblique axes are different
from those for rectangular axes. The propositions of Arts.

50 and 62 are true for oblique, as well as rectangular,
coordinates.

91. 7o find the equation to a straight line referred to
acxes inclined at an angle o.

Let LPL' be a straight line which cuts the axis of Y at
a distance ¢ from the origin and is
_inclined at an angle 6 to the axis
of x.

Let P be any point on the
straight line. Draw PN M parallel
to the axis of y to meet 0X in M,
and let it meet the straight line
through C parallel to the axis of x
in the point X¥.

Let P be the point (z, y), so that

CN=0M=2, and NP=MP-0C=y—c.

5—2




68 COORDINATE GEOMETRY.

Since - CPN= ¢ PNN'~ . PCN' = w—0, we have
y—c_NP_sin NCP sin 0

x —ﬂV:sinCPN:sin(w—G)'
sin 0

Hence y=m§i;-(w—_é)+c .................. (1).
This equation is of the form
Yy =mx+c,
where
sind sin 0 _ tan 0
M= §in(w—0) sinwcosf—coswsinfd sinw-—coswtand’
and therefore tanf= " on®
l1+mcosw
In oblique coordinates the equation
y=mx+c

therefore represents a straight line which is inclined at an
angle

m sin w

-1 el
tan l4+mcosw
to the axis of .

Cor. From (1), by putting in succession 6 equal to 90°
and 90° + o, we see that the equations to the straight lines,
passing through the origin and perpendicular to the axes of

« and y, are respectively y = — (?Jas%u and y =—  cos .

92. The axes being oblique, to find the equation to the
straight line, such that the perpendicular on it from the origin
8 of length p and makes angles o and B with the axes of «
and y.

Let LM be the given straight line and OK the perpen-
dicular on it from the origin.

Let P be any point on the
straight line; draw the ordinate
PN and draw NR perpendicular
to OK and PS perpendicular to
NR.

Let P be the point (z, y), so
that ON =« and NP=y.
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The lines NP and OY are parallel.
Also OK and SP are parallel, each being perpendicular
to NR.

Thus tSPN=:KOM=_8.

‘We therefore have

P=0K=0R+8SP=0Ncosa+ NPcosfB=xcosa+ycosp.
-Hence xcosa+ycos B—p=0,

being the relation which holds between the coordinates of

any point on the straight line, is the required equation.
93. To find the angle between the straight lines

y=mx+c and y=m'z+c,
the axes being oblique.

If these straight lines be respectively inclined at angles
6 and @ to the axis of , we have, by the last article,

ta.n0=——-———m8inw and t&n0,=___m's,inw .
1+mcosw 1+m cose
The angle required is 0 ~ 4",
tan § — tan ¢
Now tan(o_o’)=l+tan0.tan0’
msin o m’ sin ©
_ T+moosw Ti+mcosw
_1 m 8in o m’ sin o

T+mcosw 1+m'cosw

msin o (1 + m’ cos w) —m'sin o (1 + m cos w)
(1 + m cos w) (1 + m’ cos w) + mm' sin?

_ (m —m')sin o

" 1+ (m+m')cos @ +mm'"
The required angle is therefore

(m—-m)sinw
1+ (m+m') cos 0 + mm’’

tan-!

’

Cor. 1. The two given lines are parallel if m =m’.
Cor. 2. The two given lines are perpendicular if
14 (m+m’) cosw+4mm’=0.
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¢ 94. If the straight lines have their equations in the
o Az + By +C=0 and A’z + By + ('=0,
then m_—% and m=—%,:.
Substituting these values in the result of the last article
the angle between the two lines is easily found to be
A'B-AB
A4’ + BB —(AB + 4’'B) cos v
The given lines are therefore parallel if
A'B— AB =0.
They are perpendicular if

AA'+ BB =(AB' + A'B) cos w.

tan-! 8in w.

98. Bx. The azes being inclined at an angle of 80°, obtain the
equations to the straight lines which pass through the origin and are
inclined at 45° to the straight line z +y=1.

Let either of the required straight lines be y =maz.

The given etraight line is y= -~ 2 + 1, 8o that m'= - 1.

‘We therefore have

(m-m')sin w
1+ (m+m') cos w +mm’
where m'= -1 and w=2380°.

=tan (&45°),

This equation gives -WT:S_:]WW ==1,

Taking the upper sign we obtain m= -:/—3

Taking the lower sign we have m= —,/3.

The required equations are therefore
y=-A/3z and y= -"75

© dee. y+4/32=0 and /8y +x=0.

96. 7o find the length of the perpendicular from the
point (&, y') upon the straight line Ax + By + C =0, the axes
being wnclined at an angle o, and the equation bemg written
80 that C i8 a negative quantity.
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Let the given straight line meet the axes in Z and M,
c c

so that OL=—2 and OM = — 3

Let P be the given point (2, y).
Draw the perpendiculars PQ, PR,
and PS on the given line and the
two axes.

Taking O and P on opposite sides @
of the given line, we then have

ALPM +AMOL=A0LP+AOPM,
ie. PQ.LM+OL.OMsinw=0L.PR+OM.PS...(1)

Draw PU and PV parallel to the axes of y and z, so
that PU=y and PV =2

Hence PR = PUsin PUR = y'sin v,

and PS=PVsin PVS =«'sinw.
Also
LM=A\OL*+ OM*-20L.0M cos 0
0’ c? 20’ C I+_I_ﬁcosw
DnrBETAgBot =" LTFT 4B

since C is a negative quantity.
On substituting these values in (1), we have

. PQ x(=0)x \/A’ _2008«» A—O’Bsinm

——Z .Y sino —% « sin o,

8o that PQ = Ax'+By +C

. 8in w.
+ Béi-2 cCos w

Cor. If w=90°, ie if the axes be rectangular, we
have the result of Art. 75.
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EXAMPLES. IX.

1. The axes being inclined at an angle of 60°, find the inclination
to the axis of x of the straight lines whose equations are
(1) y=2z+5,
and (2) 2y=W3-1)z+1T. .

2. The axes being inclined at an angle of 120°, find the tangent
of the angle between the two straight lines

8z+Ty=1 and 28z-73y=101.

8. With oblique coordinates find the tangent of the angle
between the straight lines

y=mz+c and my+z=d.

4, Ify=ztan ];21{ and y=z tan %9{ represent two straight lines
at right angles, prove that the angle between the axes is T

4

5. Prove that the straight lines y+xz=c and y=z+d are at
right angles, whatever be the angle between the axes.

8. Prove that the equation to the straight line which passes
through the point (k, k) and is perpendicular to the axis of x is

z+y cosw=h+k cos w.

7. Find the equations to the sides and diagonals of a regular
hexagon, two of its sides, which meet in a corner, being the axes of
coordinates.

8. From each corner of a parallelogram a perpendicular is drawn
upon the diagonal which does not pass througll:ethst corner and these
are produced to form another parallelogram; shew that its diagonals
are perpendicular to the sides of the first parallelogram and that they
both have the same centre.

9. If the straight lines y=m,z+¢, and y=m,z +c, make equal
angles with the axis of z and be not 5&1&113? to one arzmther, prove
that m, +my+ 2m;m, cos w=0.

10. The axes being inclined at an angle of 30°, find the equation
to the straight line which passes through the point (-2, 3) and is
perpendicular to the straight line y + 3z=6.

11. Find the length of the perpendicular drawn from the point

(4, - 3) upon the straight line 6z + 3y —10=0, the angle between the
axes being 60°.

12. Find the equation to, and the length of, the perpendicular
drawn from the point (1, 1) upon the straight line 8z +4y +5=0, the
angle between the axes being 120°.

e e e A e —————— ==
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}3_ Th? ’:soz;'dimtes tgl a p%m{; P refer;ettlh to axes mel:nting at an
angle w are (A, k) ; prove that the length of the straight line joining
the feet of the perpendiculars from P upon the axes is

8in w \/AT+ k2 + 2Kk 008 w.

14. From a given point (k, k) perpendiculars are drawn to the
axes, whose inclination is w, and their feet are joined. Prove that
the length of the perpendicular drawn from (A, k) upon this line is

___ hksinle
JiAT P 2hkcos w’
and that its equation is hx — ky=h*- k3.

Straight lines passing through fixed points.
97. If the equation to a straight line be of the form
ax+by +c+A(az+by+c)=0.........(1),
where A is any arbitrary constant, it always passes through
one fixed point whatever be the value of A
For the equation (1) is satisfied by the coordinates of
the point which satisfies both of the equations
ax + by +¢=0,
and az+by+c=0.
This point is, by Art. 77,
b’ —bc ca'—ca
(@=a w=)
and these coordinates are independent of A.
Bx. Given the vertical angle of a triangle in magnitude and

position, and also the sum of the reciprocals of the sides which contain
it; shew that the base always passes through a fized point.

Take the fixed angular point as origin and the directions of the
sides containing it as axes ; let the lengths of these sides in any such
triangle be a and b, which are not therefore given.

‘We have %+ %:const.:ilc (aay)........‘ ............... (1)
The equation to the base is
§+%=L
i.e., by (1), Iy %-3):1,
ie. %(z—y)+%—l=0.
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‘Whatever be the value of a this straight line always passes through
the point given by
z-y=0 and %—1:0,
i.e. through the fized point (k, k).

98. Prove that the coordinates of the centre of the
circle inscribed in the triangle, whose vertices are the points

(z1y 31); (%25 93), and (23, ys), are
ax, + bag + cxy and ay, + by, + cys
a+b+c a+b+e
where a, b, and ¢ are the lengths of the sides of the triangle.
Find also the coordinates of the centres of the escribed
circles.

Let ABC be the triangle and let AD and CE be the
bisectors of the angles 4 and C
and let them meet in O'.

)

(270 D
Then O’ is the required point. Y E )
Since 4D bisects the angle B Q\
BAC we have, by Euc. VI. 3, () c
BD _DC_BD+DC_ a_ q )
BA~ AC BA+AC b+c’ o X
so that
ba
.DC = z‘—.‘-c ..

Also, since CO’ bisects the angle AC'D, we have

A0 AC b  b+e

0D~ CD™ ba &

brc
The point D therefore divides BC in the ratio
B4 : AC, te ¢ : b

Also 0 divides AD in the ratio b+c¢ : a.
Hence, by Art. 22, the coordinates of .D are

o5 + ba, and 02’/8"‘1’.1/2.
c+b c+bd
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Also, by the same article, the coordinates of 0’ are

oy + ba, cys + by,
B +c)x Py +ax, nd (b+c)x—c+b + ay,
(b+c)+a (b+c)+a !
ie. ax, + by tomy o A +by oy,
a+b+c a+b+c

Again, if 0, be the centre of the escribed circle opposite
to the angle A, the line CO, bisects the exterior angle of
ACB.

Hence (Euc.-VI. A) we have

40, AC b+ec

0D CD™ a -

Therefore O, is the point which divides 4D externally in
the ratio b +c¢ : a.

Its coordinates (Art. 22) are therefore

b
G+ ZEB oy pegtie_,,
(b+c)—a and (b+c)—a !
ie. —amtboter L —aptbytoys
—a+b+ec —a+b+e

Similarly, it may be shewn that the coordinates of the-
centres of the escribed circles opposite to B and C are

respectively
ax, — biy + ez, am—byﬂcy.)
b

a—b+c ’ a—b+e
and (a“’l"‘bzn" Xy  ay, +'by,—cy,)
a+b—c ' a+b—c

99. As a numerical example consider the case of the
triangle formed by the straight lines

3x+4y—7=0, 122+5y—17=0 and bz +12y—34=0.

These three straight lines being BC, CA4, and AB
respectively we easily obtain, by solving, that the points
A, B, and C are

2 19 -52 67
(7’ 7): (W’ 1) 20d (4L 1)
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Hence
Y Y S
a= (1‘6“ )*(R‘ )" 16" 162
85

17 -
=E“/4 +¥ =15

‘ 2\? 19\? 5 128 13
b=/\/(1_7 +(1—-—7—)= 7’—1+—77=7,

and .
c-.J(§+§?’+(E_67)’_ 3967+ 165°
- 7716 7T 16) 1127

33 ,— 429
=1—l§~/169=ﬁ2.
Hence
_8 2 170 85 19 1615
=TI MMTIE T T 11
be 18, —52_ 676 . 13 67 871
D= X g T TI1e’ T X 16T i1’
429

_429 d -
=113 *d ep=1yy-
The coordinates of the centre of the incircle are therefore
1_70 676 N 429 1615 871 429
112 1127 112 112 Tt 112
=150 and =T
67 g 7R
2.e. ——1— and 265

16 112°

The length of the radius of the incircle is the perpen-

. 1 265 )
dicular from (_'ﬁ’ Tl_ﬁ) upon the straight line

e+ 4y-7=0,
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(53-1) + (6 20) -1
and therefore =
V34
_—21+1060-784 255 51
5x112 T“hx112 112

The coordinates of the centre of the escribed circle
‘which touches the side BC externally are

170 676 429 . 1615 871 429
T2t I 112 T2t 112
85 13 420 °° 85 13 420 '
16T 7 12 "6t T 112
i —417 =315
e IT) 2

Similarly the coordinates of the centres of the other
escribed circles can be written down.

100. Bx. Find the radius, and the coordinates of the centre, of
the circle circumscribing the triangle formed by the points
(0, 1), (2, 8), and (8, 5).
Let (z,, y,) be the required centre and R the radius.
Since the distance of the centre from each of the three points is the
same, we have
0+ W~ 1= (@ - 9P+ (9, - )2 = (5, — 8P+ 4y ~ B =...(1).
From the first two we have, on reduction,
z+y,=8.
From the first and third equations we obtain
6z; + 8!/1 =388,
Solving, we have z,= - § and y, =3¢,
Substituting these values in (1) we get
R=§,/10.

101. Bx. Prove that the middle points of the diagonals of a com-
plete quadrilateral lie on the same straight line.

[Complete quadrilateral. Def. Let 0ACB be any quadrilateral.
Let AC and OB be produced to meet in E, and BC and 04 to meet in
F. Join AB, OC, and EF. The resulting figure is called a complete
qusdnlateral; the lines 4B, OC, and EF are called its diagonals, and
the poin;s E, F, and D (the intersection of 4B and OC) are called its
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Take the lines OAF and OBE as the axes of z and .

o A F X

Let 04=2a and OB=2b, 80 that 4 is the point (2a, 0) and B is
the point (0, 2b); also let C be the point (2h, 2k).

Then L, the middle point of OC, is the point (k, k), and M, the
middle point of 4B, is (a, b).

The equation to LM is therefore
: k-b
y-b:m(x—a), .
ie. (h-a)y- (k= b) z=bh=ak.......cor.... weene(1)e

Again, the equation to BC is y— 2="7"z.
—2bh
=5

- 2bh
-k—_—b,o).

Puiting y =0, we have z= so that F is the point

Similarly, E is the point (o. - ;2-“_% )

. . . [-bh —ak

Hence N, the middle point of EF, is =3’ m) .

These coordinates olearly satisfy (1), i.e. N lies on the straight
line LMM.

EXAMPLES. X,

1. A straight line is such that the algebraio sum of the perpen-
diculars let fall upon it from any number of fixed points is gzero;
shew that it always passes through a fixed point.

2. Two fixed straight lines OX and OY are cut by a variable line

in the points 4 and B respectively and P and Q are the feet of the

iculars drawn from 4 and B upon the lines OBY and 04X,

ﬂewtb&t,itABpmthroughs fized point, then PQ will also pass
through a fixed point.
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8. If the equal sides AB and AC of an isosceles triangle be pro-
duced to E and F so that BE . CF = AB3, shew that the line EF will
always pass through a fixed point.

4, If a straight line move so that the sum of the perpendio
let fall on it from the two fixed points (8, 4) and (7, 2) is equal to
three times the perpendicular on it from a third fixed point (1, 8),
prove that there 18 another fixed point through which this line always
passes and find its coordinates.

Find the centre and radius of the circle which is inscribed in the
triangle formed by the straight lines whose equations are

5. Sz+4y+2=0, 8z-4y+12=0, and 4z-8y=0.

6. 2z+4y+3=0, 4z+8y+3=0, and z+1=0.

7. y=0, 122-5y=0, and 3z+4y-7=0.

8. Prove that the coordinates of the centre of the circle insoribed

in the triangle whose angular points are (1, 2), (2, 8), and (3, 1) are
8+y10 . "16-,/10

6 6
Find also the coordinates of the centres of the escribed circles.

9. Find the coordinates of the centres, and the radii, of the four
circles which touch the sides of the triangle the coordinates of whose
angular points are the points (6, 0), (0, 6), and (7, 7).

10. Find the position of the centre of the circle circumscribing
the triangle whose vertices are the points (2, 3), (3, 4), and (6, 8).
Find the area of the triangle formed by the straight lines whose
equations are

11. y=gz, y=2z, and y=38z+4.
12. y+z=0, y=2+6, and y=Tz+5.
13. 2y+z-6=0, y+22-7=0, and z-y+1=0,

14. 8z -4y+4a=0, 2z -8y +4a=0, and 5z -y + a =0, proving also
that the feet of the perpenglyonhra from the origin upon them are
collinear.

15. y=az-be, y=bxz-ca, and y=cz - abd.

a a a
. Yy=mzZ+—, y=mZ+—, and y=mz+—.
16. y=ma+o, y=ma+ o y=mgz+ o

17. y=mz+c¢,, y=mez+c,, and the axis of y.
18. y=maz+e,, y=mz+c,, and y=myz+c;.

19. Prove that the area of the triangle formed by the three straight
lines @,z + by + ¢, =0, agz + by +¢,=0, and agz+ by +c3=0 is

a, b, 6
} ag, bp Cy
ag; by cy

)
} +(ayby - aghy) (aybs — ashy) (ashy — aby).
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20. Prove that the area of the triangle formed by the three straight
lines
zoosat+ysina-p =0, zoosB+ysing-p,=0,

and zcosy+y8iny—py=0,
i{me(‘Y B) +pysin(a —v) +pysin(B-a)}?
8in (y - p) sin (e~ ) sin (8- a)
. 21. Prove that the area of the parallelogram contained by the
lines 4y-8z-a=0, 3y —4x+a=0, 4y-3x—8a=0,
and 3y-4z+2a=0 is $a3.

22. Prove that the area of the parallelogram whose sides are the
straight

is

a1z+bw+cx=0, az+by+d;=0, axx+by+cy=0,

and 0,7+ by +dy =0
. (y-e) dy-cy).
a5y - aghy

28. The vertioes of a quadrilateral, taken in order, are the po:
(0, 0), (4,0), (8, 7), and (0, 8); find the coordinates of the pomt of
intersection of the two lines joining the middle points of opposite

24, Thelines z+y+1=0, z-y+2=0, 4z+2y+8=0, and
z+2y-4=0
the equations to the sides of a quadrilateral taken in order; find

the equations to its three diagonals and the equation to the line on
which their middle points lie.

25. Shew that the orthocentre of the triangle formed by the three
straight lines

y= Tt y=mg+—, and y=mgz+ =
) . my; m’ my’ Yy=mgz m
is the point 1
et ——
{ ("‘1 my My "'1'":"';)}
26. 4 and B are two fixed points whose coordinates are (8, 2) and
(5, 1) respectively; ABP is an equilateral iriangle on the side of 4B

remote from the origin. Find the coordinates of P and the ortho-
centre of the triangle 4BP,

102. EX. The base of a triangle is fixed ; find the
locus of the vertex when one base angle 18 double of the
other.
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Let AB be the fixed base of the triangle; take its
middle point O as origin, the direc-
tion of OB as the axis of z and a Y

perpendicular line as the axis of y. P

Let A0=0B=a. i

If P be one position of the ~A O BNX
vertex, the condition of the problem then gives

( PBA=2.PAB,

t.e. T— =20,
.e ' —tan¢=tan20..................... (1.
Let P be the point (2, £). We then have
k k

——=tanf and —— =tan¢.
h+a h—a
Substituting these values in (1), we have
k
2

k  “h+a  2(h+a)k
“h-a k \* (h+ay—k*
l—(h+a>
i.e. —(h+ay+8=2(h-a%,
t.e. 2— 3k —2ak +a*=0.

But this is the condition that the point (%, &) should lie
on the curve

y*— 32— 2ax + a* =0,
This is therefore the equation to the required locus.

103. Ex. From a point P perpendiculars PM and
PN are drawn upon two fixed lines which are inclined at an
angle o and meet in a fixed point O ; if P move on a fized
straight line, find the locus of the middle point of MN.

Let the two fixed lines be taken as the axes. Let the
coordinates of P, any position of the
moving point, be (&, k).

Let the equation of the straight
line on which P lies be

Ax + .By +(C = 0,
8o that we have :
Ah+ Bk +C =0 ...... (1).

L. 6

N,
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Draw PL and PL' parallel to the axes,
‘We then have )
OM=0L + LM = OL + LP cos o= h + k cos w,
and ON=OL'+L'N=LP+ L'Pcoswo=k+hcosw.
M is therefore the point (% + k cos w, 0) and N is the point
(0, & + A cos w).
Hence, if (2, ') be the coordinates of the middle point

of MN, we have
) 2% =h+KkCOB® ceverinnnnnnannn (2),

and 2 =k+hCOB® cvevrinninnannne (3).
Equations (1), (2), and (3) express analytically all the
relations which hold between =/, ¥/, 4, and %.

Also % and k are the quantities which by their variation
cause @ to take up different positions. If therefore between
(1), (2), and (3) we eliminate 4 and % we shall obtain a
relation between «’ and 3’ which is true for all values of 4
and %, i.e. a relation which is true whatever be the position
that P takes on the given straight line.

From (2) and (3), by solving, we have

_2( - ynoosw) and k= 2(y - a:oos:o)
sin’ow sin
Substituting these values in (1), we obtain
24 (2’ — y' cos w) + 2B (y — «' cos w) + C sin*w = 0.

But this is the condition that the point («, ') shall

always lie on the straight line

24 (x -y cos w) + 2B (y — x cos v) + C'sin® 0 =0,
t.¢, on the straight line

x (4 — Bcosw) +y (B~ A4cos ) +4Csin’w =0,
which is therefore the equation to the locus of Q.

104. Ex. A straight line is drawn parallel to the
base of a given triangle and its extremities are joined trans-
versely to those of the base; find the locus of the point
of tintersection of the joining lines.
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. Let the triangle be O4B and take O as the origin and
the directions of 04 and 0B
as the axes of z and y.

Let OA=a and OB=4b,
so that a and b are given
quantities.

Let A'B’ be the straight N
line which is parallel to the @ A
base 4B, so that

04' OF
04 =05 =" (=),
and hence OA4' = a and OB’ =Ab.

For different values of A we therefore have different
positions of A'B’.

The equation to 4B’ is
x Yy
—Fap= Lo (1),
and that to 4'B is
x
et E =T @)

Since P is the intersection of 4B and A'B its coordi-
nates satisfy both (1) and (2). Whatever equation we
derive from them must therefore denote a locus going
through P. Alsoif we derive from (1) and (2) an equation
which does not contain A, it must represent a locus which
passes through P whatever be the value of A; in other
words it must go through all the different positions of the
point P.

Subtracting (2) from (1), we have

2(1-) +#6-1)-

. x_y
.. =7

This then is the equation to the locus of 2. Hence P
always lies on the straight line

y=;wy
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which is the straight line OQ where 0A@B is a parallelo-
gram.

Aliter. By solving the equations (1) and (2) we
easily see that they meet at the point

A a 2 b)
‘ : (ﬁl " A+1)"
Hence, if P be the point (&, k), we have

Hence for all values of A, .e. for all positions of the
straight line 4'B’, we have

a b’
But this is the condition that the point (&, k), i.e. P,
should lie on the straight line

z_Y
a b
The straight line is therefore the required locas.

105. EX. A variable straight line is drawn through
a given point O to cut two fixed straight lines in R and S ;
on it 18 taken a point P such that

2 _1 1.
OP OR" 0S8’
shew that the locus of P 18 a third fixed straight line.

Take any two fixed straight lines, at right angles and
passing through O, as the axes and let the equation to the
two given fixed straight lines be

Ax+By+C=0,
and A'z+ By +C'=0.
Transforming to polar coordinates these equations are

1 Acosf+Bsinf 1 A'cos@+ B'sinb
e and ~=-— .
r , C r C
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If the angle XOR be 0 the values of L and LS are

OR oS
therefore
A cos+ Bsin @ A' cos § + B'sin 0
- and — ; .
4 C
We therefore have
2 Acos0+Bsin0_A'eos0+B'sin
OoP "~ C C :

= 4+ 4 cos 6 ('§+ E)sino
- (C 5’) \¢"C )
The equation to the locus of P is therefore, on again
transforming to Cartesian coordinates,

beee(be£)-s (24,

and this is a fixed straight line.

EXAMPLES. XL

The base BC (=24) of a triangle ABC is fixed; the axes being
BC and a perpendicular to it through its middle point, find the locus
of the vertex 4, when

1, the difference of the base angles is given (=a).
2. the product of the tangents of the base angles is given (=)).

thesf the tangent of one base angle is m times the tangent of the
other.

4, m times the ﬂ{m of one side added to n times the square of
the other side is equal to a constant quantity c3.

From a point P perpendiculars PM and PN are drawn upon two
fixed lines which are inclined at an angle w, and which are taken as
the axes of coordinates and meet in O; find the locus of P

5. if OM+ON be equal to 2c. 6, if OM - ON be equal to 2d.
7. if PM+PNbeequal to2c. 8, if PM - PN be equal to 2¢c.
9. if MN be equal to 2¢.

10. if MN pass through the fixed point (a, b).

11. if MN be parallel to the given line y =ma.



86 COORDINATE GEOMETRY. [Exs.

12, Two fixed points 4 and B are taken on the axes such that
O4=a and OB=}b; two variable points 4’ and B’ are taken on the
same axes; find the locus of the intersection of AB’ and A'B

(1) when 04’ +0B'=04+0B,

and (2) when 111 L

13. Through a fixed point P are drawn any two straight lines to
cut one fixed straight line OX in 4 and B and another fixed straight
line OY in C and D ; prove that the locus of the intersection of the
straight lines AC and BD is a straight line passing through O.

14. OX and OY are two straight lines at right angles to one
another; on QY is taken a fixed point 4 and on OX any point B;
on AB an equilateral triangle is described, its vertex C being on the
]sii;‘ie of AB away from O. Shew that the locus of C is a straight

e,

15. If a straight line pass through a fixed point, find the locus of
the middle point of the portion of it which is intercepted between two
given straight lines.

16. 4 and B are two fixed points; if P4 and PB intersect a
constant distance 2¢ from a given straight line, find the locus of P.

17. Through a fixed point O are drawn two straight lines at right
angles to meet two fixed straight lines, which are also at right angles,
in the points P and Q. Shew that the locus of the foot of the
perpendicular from O on PQ is a straight line.

18. Find the locus of a point at which two given portions of the
same straight line subtend equal angles.

19. Find the locus of a point which moves so that the difference
of its distances from two fixed straight lines at right angles is equal
to its distance from a fixed straight line.

20. A straight line 4B, whose length is ¢, slides between two
given oblique axes which meet at O; find the locus of the orthocentre
of the triangle 04B.

21. Having given the bases and the sum of the areas of a number
of triangles which have a common vertex, shew that the locus of this
vertex is a straight line.

22. Through a given point O a straight line is drawn to cut two
given straight lines in R and S; find the locus of a point P on this
variable straight line, which is such that

(1) 20P=0R+ 08,
and (2) OP2=0R. 0S.
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23. Given n straight lines and a fixed point O; through O is
drawn a straight line meeting these lines in the points R,, R,, R,,
...R,, and on it is taken a point R such that

.l—_1_+_}—+_1 + +_1_.-
OR ™ OR, "OR,"” OR," """ OR,’
shew that the locus of R is a straight line.

24, A variable straight line cuts off from n given concurrent
straight lines intercepts the sum of the reciprocals of which is con-
stant. Shew that it always passes through a fixed point.

25, If a triangle ABC remain always similar to a given triangle,
and if the point 4 be fixed and the point B always move along a
given atmi& line, find the locus of the point C.

926. A righi-angled triangle 4BC, having C a right angle, is of
given magnitude, and the angular points 4 and B slide along two
given perpendicular axes; shew that the locus of C is the pair of
straight lines whose equations are y = *gz.

927. Two given straight lines meet in O, and through a given point
P is drawn a straight line to meet them in Q and R; if the

p:msllelogram OQSR be completed find the equation to the locus
of S.

28. Through a given point O is drawn a straight line to meet two
given parallel straight lines in P and Q; through P and Q are drawn
straight lines in given directions to meetin R; prove that the locus of
R i8 a straight line.



CHAPTER VI

ON EQUATIONS REPRESENTING TWO OR MORE
STRAIGHT LINES,

106. Surrosk we have to trace the locus represented

by the equation
Y =32y +22=0....ccocunnnnnnn. (1).
This equation is equivalent to
(y—x)(y—22)=0..ccuevvrennn.en (2).

It is satisfied by the coordinates of all points which
make the first of these brackets equal to zero, and also by
the coordinates of all points which make the second
bracket zero, i.e. by all the points which satisfy the

equation
Y=2=0.0cecririiiinniiis (3),
and also by the points which satisfy
Y—2x=0.0cceocrrinrnninnnnnnn. (4)

But, by Art. 47, the equation (3) represents a straight
line passing through the origin, and so also does equa-
tion (4).

Hence equation (1) represents the two straight lines
which pass through the origin, and are inclined at angles of
45° and tan™ 2 respectively to the axis of .

107. Ex.1. Trace the locus xy=0. This equation
is satisfied by all the points which satisfy the equation
=0 and by all the points which satisfy y=0, s.e. by
all the points which lie either on the axis of y or on the
axis of «.
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The required locus is therefore the two axes of coordi-
nates.

Ex. 2. Trace the locus «* — bz + 6=0. This equation
is equivalent to (# — 2) (#—3) =0. It is therefore satisfied
by all points which satisfy the equation z ~2 =0 and also
by all the points which satisfy the equation -3 =0.

But these equations represent two straight lines which
are parallel to the axis of y and are at distances 2 and 3
respectively from the origin (Art. 46).

Ex. 3. Trace the locus xy—4x—by+20=0. This
equation is equivalent to (z— 5)(y —4)=0, and therefore
represents a straight line parallel to the axis of y at a
distance 5 and also a straight line parallel to the axis of =
at a distance 4.

108. Let us consider the general equation

On multiplying it by a it may be written in the form
(a*z? + 2ahay + hy?) — (R - ab) y* =0,
ie. {(ax+hy) +yJWP—ab} {(ax + hy) — y A —ab} = 0.

As in the last article the equation (1) therefore repre-
sents the two straight lines whose equations are

ax+hy+yNBE—ab=0 ............... (2),
and ax+hy—yNE—ab=0......ccouue.n. (3),

each of which passes through the origin.

For (1) is satisfied by all the points which satisfy (2),
and also by all the points which satisfy (3).

These two straight lines are real and different if 42> ab,
real and coincident if A? = ab, and imaginary if A2<ab.

[For in the latter case the coefficient of y in each of the
equations (2) and (3) is partly real and partly imaginary.]

In the case when A?<ab, the straight lines, though
themselves imaginary, intersect in a real point. For the
origin lies on the locus given by (1), since the equation (1)
is always satisfied by the values =0 and y=0.
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109. An equation such as (1) of the previous article,
which is such that in each term the sum of the indices of «
and y is the same, is called a homogeneous equation. This
equation (1) is of the second degree; for in the first term
the index of x is 2; in the second term the index of both =
and y is 1 and hence their sum is 2; whilst in the third
term the index of y is 2.

Similarly the expression

3a® + 4o’y — bay® + 9y°
is a homogeneous expression of the third degree.
The expression '

3a? + 4o’y — bay® + 9y — Tay

is not however homogeneous; for in the first four terms
the sum of the indices is 3 in each case, whilst in the last
term this sum is 2.

From Art. 108 it follows that a homogeneous equation
of the second degree represents two straight lines, real and
different, coincident, or imaginary.

110. The axes being rectangular, to find the angle
between the straight lines given by the equation

Let the separate equations to the two lines be
y—mx=0 and y—max=0............ (2),
so that (1) must be equivalent to

b(y—mx) (y—myx)=0............... (3).
Equating the coefficients of xy and «* in (1) and (3), we
have
—b (my +m,) =2k, and bmm,=a,
a

2
so that m1+m2=——l‘, and mymy = .
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If 6 be the angle between the straight lines (2) we
have, by Art. 66,

tan g = ™= _ J(m+m) — dmym,

1+ mym, 1+mym,
4F _ 4a
5 aJhi-ab
= ) = a+b ............ (4)
1+3

Hence the required angle is found.

111. Condition that the straight lines of the previous
article may be (1) perpendicular, and (2) coincident.

(1) If a + b=0 the value of tan 6 is o and hence 6 is
90° ; the straight lines are therefore perpendicular.

Hence two straight lines, represented by one equation,
are at right angles if the algebraic sum of the coefficients of
«? and y* be zero.

For example, the equations
2 ~-y=0 and 62+ 1lay —6y=0
both represent pairs of straight lines at right angles.
Similarly, whatever be the value of A, the equation
2+ 2hxy — 2 =0,
represents a pair of straight lines at right angles.

(2) If A*=ab, the value of tan @ is zero and hence 0 is
zero. The angle between the straight lines is therefore
zero and, since they both pass through the origin, they are
therefore coincident.

This may be seen directly from the original equation.
For if A*=ab, i.e. h = Jab, it may be written

ax® +2,/ab xy + by? =0,
e (Waz+ Jbyy=0,

which is two coincident straight lines.
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112. 7o find the equation to the straight lines bisecting
the amgle between the straight lines given by
ax®+ 2haoy + b =0.ccveennnnnnnnnn. (1).
Let the equation (1) represent the two straight lines

L,0M, and L,OM, inclined at angles 6, and 6, to the axis
of z, so that (1) is equivalent to

b (y -« tan 6,) (y — «tan 6,)=0.

2h
)
Let OA4 and OB be the required bisectors.
Since ¢ AOL,= ¢ L,04,
. tA0X —-6,=6,— + AOX.
S 2.40X =06, +6,
Also ¢ BOX=90"+ . AOX.
S 22B0X=180°+6, +6,.
Hence, if 6 stand for either of the angles 40X or BOX,
we have
tan 20 =tan (6, + 6,) =
by equations (2).
But, if (z, y) be the coordinates of any point on either
of the lines 04 or OB, we have

tanf=Y,
x

Hence

tan 0, + tan 6, =— -, and tan 6, tan 6, =%...(2).

tanf, +tand, 24
1-tanf,tanf, b—a’
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2k 2tand
P )

I
J v
Bl
1
8
I
h-

1=
x2 —
a-b .
This, being a relation holding between the coordinates

of any point on either of the bisectors, is, by Art. 42, the
equation to the bisectors.

<1

2.6

=3
=5

118. The foregoing equation may also be obtained in the follow-
ing manner :
Let the given equation represent the straight lines
y-mz=0 and y-myz=0..................... 1),

so that my+my= -%h and mlm,.—.; .................. (2).

The equations to the bisestors of the angles between the straight
lines (1) are, by Art. 84,

YoMZ _ Y-y L Y-z y-myr

Nirmp JTrmg o fTemp Jlemg

or, expressed in one equation,
{.1!:1‘11 _.t"_'!"} {J’:_"_'lf + y-myz }=o,
Nivmd  Jlemd WIem?  JI+mg

y-mz)! _(y-my2)’_,
1+m12 1+1“” !
ie. (14m)) (y? - 2m 2y +mP2%) — (1 +my?) (y? - 2myzy + my?2?) =0,
ie. (my? - mg) (2* - y?) + 3 (mymy - 1) (m, — my) 2y =0,
i.c. (m, +my) (23 - y*) + 2 (mymy — 1) zy =0.
Henoe, by (2), the required equation is

" -2 a
T(c’-y’)+2(3-l)zy=0,

o2
t.e 2-y =,

a-b A

i.e.
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EXAMPLES. XIL

Find what straight lines are represented by the following equations
and determine the angles between them.

1. 2%-Tzy+12y3=0. 2. 423 24xy+11y3=0.
3. 83z2-Tlzy-14y2=0. 4, z8-62+11z-6=0.
5. y2-16=0. 8. y®-zy®—14z3y+Uz3=0.
7. 23+2zysecd+y2=0. 8. 22+2zycotf+y?=0.

9. Find the equations of the straight lines bisecting the angles
between the pairs of straight lines given in examples 2, 8, 7, and 8.
10. Shew that the two straight lines
22 (tan?0 + cos? ) — 2zy tan 6 +y?8in? 6=0
make with the axis of z angles such that the difference of their
tangents is 2.
11. Prove that the two straight lines
(#%+?) (c0s?@ sin®a +8in?0) = (z tan o - y sin 6)?
include an angle 2a.
12. Prove that the two straight lines
228in%q 008?60 + 4y sin a 8in 0 + 2[4 cos a — (1 + cos a)? cos?6]=0
meet at an angle a.

GENERAL EQUATION OF THE SECOND DEGREE.

114. The most general expression, which contains
terms involving # and y in a degree not higher than the
second, must contain terms involving a2 xy, 3 =, y, and a
constant.

The notation which is in general use for this ex- -

pression is
ax® + 2hay + byt + 292+ 2y + ¢ oon.et (1).
The quantity (1) is known as the general expression of

the second degree, and when equated to zero is called the
general equation of the second degree.

The student may better remember the seemingly
arbitrary coefficients of the terms in the expression (1)
if the reason for their use be given.
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The most general expression involving terms only of
the second degree in «, y, and 2 is :
ax? + by + 2 + Uyz + 2922 + 2hay ...... (2),
where the coefficients occur in the order of the alphabet.
If in this expression we put z equal to unity we get
a® + by + ¢ + Uy + 29z + 2hwy,
which, after rearrangement, is the same as (1).
Now in Solid Geometry we use three coordinates x, y,

and z. Also many formule in Plane Geometry are derived
from those of Solid Geometry by putting z equal to unity.

We therefore, in Plane Geometry, use that notation
corresponding to which we have the standard notation in
Solid Geometry.

115. In general, as will be shewn in Chapter XV.,
the general equation represents a Curve-Locus.

If a certain condition holds between the coefficients of
its terms it will, however, represent a pair of straight lines.

This condition we shall determine in the following
article.

116. 7o find the condition that the general egquation
of the second degree
ax® + 2hay + by + 292 + 2fy +¢=0......... (1)
may represent two straight lines.

If we can break the left-hand members of (1) into two
factors, each of the first degree, then, as in Art. 108, it
will represent two straight lines.

If & be not zero, multiply equation (1) by @ and arrange
in powers of «; it then becomes

a’c* + 2ax (hy + g) = — aby® — 2afy — ac.
On completing the square on the left hand we have
a’@® + 2ax (hy + g) + (hy + 9)*=y* (A*— ad)
. + 2y (gh— af )+ g* - ac,

%.€

(az+hy+g) =2/ (B2—ab) + 2y (gh— af ) + g* —ac ...(2).
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From (2) we cannot obtain « in terms of y, involving
only terms of the first degree, unless the quantity under the
radical sign be a perfect square.

The condition for this is
(gh— af ) = (B — ab) (¢° — ac),
f.e g — 2afgh + a¥f* = g*h* — abg® — ack® + a%bc.
Cancelling and dividing by @, we have the required
condition, viz.
abc 4 2fgh — af? - bg? —ch?=0 ...... (3).
117. The foregoing condition may be otherwise obtained thus:
The given equation, multiplied by (a), is
alz?+ 2ahzy + aby®+ 2agz + 2afy + ac=0 ............(4).

The terms of the second degree in this equation break up, a8 in
Art. J08, into the factors

az+hy -y I3 —ab and az+hy+y A/ k3~ ab.
If then (4) break into factors it must be equivalent to

{az+(h - N W =ab) y + 4} {az +(h+ N W= ab) y + B} =0,
where 4 and B are given by the relations

a(A+B)=200 ....cocoevvererrererrerenns (5),

A (h+ /B —ab) + B (h- /W= ab)=2fa ............(6),

and AB=ac............. cesressanennenes veee (7)e
The equations (5) and (6) give ofa— 201
A+B=2g, and 4 -B=2"20"
+B=2, an N2 —ab

The relation (7) then gives
4ac=44B=(4+B)* - (4-B)?

—gh)?
=4gn_4£f“Ty___'

t.e. (fa - gh)?= (9%~ ac) (h? - abd),
whioch, a8 before, reduces to
abc+2fgh - af? - bg® — ch®=0.
Bx. If a be zero, prove that the general equation will represent
two straight lines if
2fgh — bg? - ch®=0.
If both a and b be zero, prove that the condition is 2fg - ch=0.
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118. The relation (3) of Art. 116 is equivalent to the :
expression |
a h g
hy b, f|=
g9 fic

This may be easily verified by writing down the value
of the determinant by the rule of Art. 5.

A geometrical meaning to this form of the relation (3)
will be given in a later chapter. [Art. 355.]

The quantity on the left-band side of equation (3) is
called the Discriminant of the General Equation.

The general equation therefore represents two straight
lines if its discriminant be zero.

119. Bx. 1. Prove that the equation
1223+ Tzy — 10y + 18z + 45y — 835=0
represents two straight lines, and find the angle between them.

Here
a=13, h=}], b=-10, g=332, f=4AL and c¢=-86.
Hence abe+2fgh - af* - bg? - ch?

=13x (~10) x (- 85)+2 x 4 x 44 x § - 13 x (42)3— (- 10) x (A2)?

-(-85)@)”
=4200+ 4928 — 6075 + 1822 4 1128
=-1875+1820=0.
The equation therefore represents two straight lines.
Solving it for z, we have

>
£,+$7y1-;13+ 7y;;13) _ 1oy 45y+85 (7y+13)

_(28y- 43)
LTuH18_ 3y a8
T =t e
ie 2=2"" o _51“'5
8 3

The given equation therefore represents the two straight lines
32=2 -7 and 4z=-by+5.
L (§
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The “m’s” of these two lines are therefore § and - ¢, and the
angle between them, by Art. 66,

=tan™-1 *_'_(_'__ﬂ =tan—! (-32),
v TEr T
Bx. 3. Find the value of h so that the equation
622+ 2hxy + 12y?+ 222+ 81y +20=0
may represent two straight lines.

Here
a=6, =12, g=11, f=%, and c=20.

The condition (3) of Art. 116 then gives
20h2 — 341k + 2902 =0,
i.e. (h-3) (20— 171)=0.
Hence h=3L or 35},
Taking the first of these values, the given equation becomes
623+ 17zy + 12y? + 22 + 31y + 20=0,
i.c. (22 + 3y +4) (32 + 4y + 5) =0.
Taking the second value, the equation is )
2022+ 57y + 40y? + 1§ v + 2}0y + 2420,
i.e. (4= + 5y +3) (5z+ 8y + 10)=0.

EXAMPLES. XIII

Prove that the following equations represent two straight lines;
find also their point of intersection and the angle between them.

1. 6yl-zy-2z3+30y+86=0. 2, 2%-8zy+4y*+z+2y-2=0.

3. 3y%-8zy-—82%—29z+3y ~18=0, :

4, Y*+zy-222-5z-y-23=0,

5. Prove that the equation

23 +6xy + 9y +42+12y - 5=0

represents two parallel lines.
p;ixlsi:;i:thr:i;ﬁuﬁ:efs’: 8o that the following equations may represent

6. 6z%4+1lzy-10y?+z+8ly+k=0.

7. 1223-10zy+2y2+ 11z - by + k=0,

8. 1222+ kxy+2y3+ 11z - 5y +2=0.

9, 6z3+xy+ky*-11z+43y-385=0,
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10. kzy-8z+9y-12=0.

11. 2*+3¢zy+y?-bz-Ty+k=0.
12. 12z%+xy - 6y*— 29248y + k=0.
13. 22%+zy -y2+kzx+6y-9=0.

14. 2+kay+y*-6z-Ty+6=0.

15. Prove that the equations to the straight lines through
the origin which make an angle a with the straight line y + =0 are
given by the equation

23+ 2zy seo 2a + y*=0.

16. What relations must hold between the coefficients of the

equations
(i) az?+by'+cz+cy=0,

and (ii) ay*+bzy +dy +ezx=0,
so that each of them may represent a pair of straight lines ?

17. The equations to a pair of opposite sides of a parallelogram
are

29-72+6=0 and y*- 14y +40=0;

find the equations to its diagonals.

120. 7o prove that a homogeneous equation of the nth
degree represents n &traight lines, real or tmaginary, which
all pass through the origin.

Let the equation be

Y+ Axy T+ Aty T+ Aty T+ L+ Azt =0,

On division by #*, it may be written

y n y -1 y n-2 B
(5) + 4, (5) + 4, (;) +ot Ay =0 (1),
This is an equation of the nth degree in g, and hence

must have n roots.

Let these roots be m,, my, m,, ... m,. Then (C. Smith’s
Algebra, Art. 89) the equation (1) must be equivalent to
the equation

() (1) () ()00

The equation (2) is satisfied by all the points which
satisfy the separate equations
Ym=0, Lom=0,.. Lm0,

—2
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1.e. by all the points which lie on the n straight lines
y—mz=0, y—mx=0,..y—mxz=0,
all of which pass through the origin. Conversely, the
coordinates of all the points which satisfy these n equa-
tions satisfy equation (1). Hence the proposition.
121. Bx. 1. The equation
: y® - 6zy? + 1122y — 623 =0,
which is equivalent to
(v - =) (y - 22) (y - 82) =0,
represents the three straight lines
y-2=0, y-2z=0, and y-3z=0,
all of which pass through the origin.
Bx. 2. The equation y*-5y?+6y=0,
ie. y(y-2)y-3)=0,
similarly represents the three straight lines
y=0, y=2, and y=3,
all of which are parallel to the axis of z.
122. 7o find the egquation to the two straight lines
Jjoining the origin to the points in which the straight line

le+my=n...ccocceevinvininnnn. (1)
meets the locus whose equation s
ax® + 2hay + by + 29 + 2fy +¢=0.........(2).
The equation (1) may be written
lz + my
— Lo (3).

The coordinates of the points in which the straight line
meets the locus satisfy both equation (2) and equation (3),
and hence satisfy the equation

a¢'+21wy+by°+2(gx+fy)lx’;’"-"+c ("";"‘y)’=o

[For at the points where (3) and (4) are true it is clear
that (2) is true.To

Hence (4) represents some locus which passes through
the intersections of (2) and (3).
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But, since the equatidn (4) is homogeneous and of the
second degree, it represents two straight lines passing
through the origin (Art. 108).

It therefore must represent the two straight lines join-
ing the origin to the intersections of (2) and (3).

123. The preceding article may be illustrated geo-
metrically if we assume that the equation (2) represents
some such curve as PQRS in the figure.

70 X

Let the given straight line cut the curve in the points
P and Q.

The equation (2) holds for all points on the curve PQRS.

The equation (3) holds for all points on the line P@.

Both equations are therefore true at the points of
intersection P and Q.

equation g), which is derived from (2) and (3),

holds therefore at P and Q.

But the equation (4) represents two straight lines, each
of which passes through the point 0.

It must therefore represent the two straight lines OP
and 0Q.

124. Bx. Prove that the straight lines joining the origin to the
points of intersection of the straight line z —y =2 and the curve:

523+ 122y — 8y?+ 8z -4y +12=0
make equal angles with the azes.
As in Art. 122 the equation to the required straight lines is

5a% 4+ 122y — 8y + (82 — dy) *2Y +12(‘°—l’) =0......(1).
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For this equation is homogeneous and therefore represents two
straight lines through the origin; also it is eatisfied at the points
where the two given equations are satisfied.

Now (1) is, on reduction,
2= 4ol

so that the equations to the two lines are
y=2z and y= -2
These lines are equally inclined to the axes.

125. It was stated in Art. 115 that, in general, an
equation of the second degree represents a curve-line,
including (Art. 116) as a particular case two straight lines.

In some cases however it will be found that such
equations only represent isolated points. Some examples
are appended.

EXx. 1. What is represented by the locus
(—y+ep+(x+y—c)P=0%........... 1).
‘We know that the sum of the squares of two real
quantities cannot be zero unless each of the squares is
separately zero.
The only real points that satisfy the equation (1)
therefore satisfy both of the equations

z—y+c=0 and z+y—c=0.
But the only solution of these two equations is
z=0, and y=c.

The only real point represented by equation (1) is therefore
(9, ¢).

The same result may be obtamed in a different manner.
The equation (1) gives

(z—y+e)=—(x+y—c)h
ie. z—y+e=N"1(z+y—c)
It therefore represents the two imaginary straight lines
z(1—V=T)—y(1+/"T)+c(1+/=1)=0,
and z(l+/=1)—y(1—/ZI)+c(l-J=1)=0.
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Each -of these two straight lines passes through the
real point (0, ¢). We may therefore say that (1) represents
two imaginary straight lines passing through the point
O, ¢).

Ex. 2. What is represented by the equation

(2 —a®)t+ (y— b)=0% -

As in the last example, the only real points on the locus

are those that satisfy both of the equations

#—a’=0 and y*—- =0,
1.6 z=+a, and y=.hb,
The points represented are therefore
(a, b), (@, —d), (—a, d), and (—a, -D).

Ex. 3. What 18 represented by the equation
L+y+a’=01

The only real points on the locus are those that satisfy
all three of the equations

=0, y=0, and a=0.

Hence, unless a vanishes, there are no such points, and
the given equation represents nothing real.

The equation may be written

2+ y=—a’

80 that it represents points whose distance from the origin
is an/=1. It therefore represents the imaginary circle
whose radius is a~/~1 and whose centre is the origin.

126. Bx. 1. Obtain the condition that one of the straight lines

given by the equation
azd 4+ hay + 1Y =0.....ccceeevrernrrrnnnen 1)
may coincide with one of those given by the equation
a4 NY + DY =0 ....oounnrnrrennnenens ).
Let the equation to the common straight line be
Y-m2T=0 .cccovniiiiininininnnen (3).

The quantity y — m, 2 must therefore be a factor of the left-hand of
'bo&h((? and (2), and therefore the value y =m,z must satisfy both (1)
and (2).
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We therefore have
by 4+ 2Ry + G =0......cvcrereereraesennns (4),
and Ym? 4+ 2R my 4@’ =0...ccuuveeerinnninninianns (5).
Solving (4) and (5), we have .
m? m 1
I(ha'-Ha) ab—-ab SOk -0
_ha'—Ha [ ab'-a'b |?
TR ™= = b’h)} J

so that we must have
(ab’ - a'b)3=4 (ha' - Ka) (b’ — b'h).
Bx. 3. Prove that the equation
m (2 - 8xy?) + y* - 822y =0
represents three straight lines equally inclined to one another.
Transforming to polar coordinates (Art. 35) the equation gives
m (cos®d — 3 cos 6 8in?0) + in36 — 3 00824 sin §=0,

ie. m (1 -3 tan?6) + tan36 - 3 tan 6=0,
. 3tan 6—tan® 6
i.e. m=- I—W_tanw.
If m=tan a, this equation gives
tan 30=tana,

the solutions of which are
80=a, or 180°+a, or 360°+a,

i.e o_g, or 60°+—, or 120°+5.

The locus is therefore three straight lines through the origin
inclined at angles
g 60°+3, snd 120°+%
to the axis of z.
They are therefore equally inclined to one another.

Bx. 8. Prove that two of the straight lines represented by the
equation
az®+bz?y +exy?+ dy?=0 ................... 1)

will be at right angles if
a?+ac +bd + d*=0.

Let the separate equations to the three lines be
y-mz=0, y-mz=0, and y-mz=0,
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80 that the equation (1) must be equivalent to
d (y -mz) (y - myz) (y — myz) =0,

and therefore My + My + My = —% ........................... (2),
b
Mgty + Mhyflhy + My Mg = oocevennnncnenniciins (8),
a
and MMMy = = et (4).
If the first two of these straight lines be at right angles we have,
in addition, (
MMy=—1 ..oceiiiiiirninicrnncnnnnien 5).
From (4) and (5), we have i }
"‘:=§:
and therefore, from (2),

The equation (3) then becomes
e ( _cta)_,_ b
. d d -dv
i.e. a'+ac+bd+d*=0.

EXAMPLES. XIV.

1. Prove that the equation
y3 - 23+ By (y - 2)=0

represents three straight lines equally inclined to one another,

2. Prove that the equation

y? (cos a + /8 8in a) cos a — zy (sin 2a — /8 cos 2a)
+2%(sin a — /3 008 a) gin a =0

represents two straight lines inclined at 60° to each other.

Prove also that the area of the triangle formed with them by the
straight line

(cosa—4/8gina)y—(sina+,/3co8a)z+a=0

- a?
is WL
and that this triangle is equilateral.

3. 8hew that the straight lines

(42— 8B%) 2%+ 84 By + (B*— 84%) y3=0

form wiz‘l; the line 4z+ By + C=0 an equilateral triangle whose area

B B@E '



106 COORDINATE GEOMETRY. [Exs.

4, Find the equation to the pair of straight lines joining the
origin to the intersections of the straight line y =mz + ¢ and the curve

zi4yi=al
Prove that they are at right angles if
2c3=a2 (1 +m3).

5. Prove that the straight lines joining the origin to the points

of intersection of the straight line
kz + hy=2hk

with the curve (- R+ (y-k)2=c?
are at right angles if R+ k3=c2.

8. Prove that the angle between the straight lines joining the
origin to the intersection of the straight line y =32+ 2 with the curve

2%+ 22y + 3y +42+8y-11=0 is tan‘lz"s/——g.

7. Bhew that the straight lines joining the origin to the other two
points of intersection of the curves whose equations are

az?+ 2hay + by? + 292 =0
and a'z%+ Bh'zy + byt +29'2=0
will be at right angles if

9 (@ +¥)-g' (a+)=0.
‘What loci are represented by the equations
8. z’—y’=o. 9, z’-a:y=0. 10, a:y—ay:O.
11. #2-2*-z+1=0. 12, 23-zy*=0. 13. «*+y*=0.
14, 2*+y*=0. 15. 2y=0. 16. (@*-1)@*-4)=0. -
17. (®-1)*+(y?-4)2=0. 18. (y-mz—c)*+(y —m'z - c')2=0.
19. (z-a?? (2% - %)%+ ¢t (3% - a%)3=0. 20. (z-a)*-y*=0.
2l (z+y)*-c*=0. 22. r=aseo (0 -a).
23. Shew that the equation
ba? - hay + ay?=0
represents a pair of straight lines which are at right angles to the pair
given by the equation
az?+ 2hzy + by?*=0.

24, If pairs of straight lines
23— 2pxy — y?=0 and z*-2qzy - y3=0

be such that each pair bisects the angles between the other pair, prove
that pg=-1.

25. Prove that the pair of lines

a3z%+ 2k (a + b) zy + b3y2=0
is equally inclined to the pair
ax® + Shay + by?=0.
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26. Shew also that the pair
az?+ Shay + by +\ (22 +y3)=0
is equally inclined to the same pair.
27. If one of the straight lines given by the equation
az3+ 3hay + by3=0
coincide with one of those given by
a2+ 2N zy + by*=0,
and the other lines represented by them be perpendicular, prove th,st
ha'V’ _ W b
V-a b-a
28. Prove that the equation to the bisectors of the angle between
the straight lines az?+23hxy + by2=0 is
h (a3~ y?) + (b - a)ay = (aa? - by”) 008 w,
the axes being inclined at an angle w.
29. Prove that the straight lines
a3+ 2hay + by?=0
make equal angles with the axis of z if h=a cos w, the axes being
inclined at an angle w.
30. If the axes be inclined at an angle w, shew that the equation
@3+ 22y 008 w+y? 008 2w=0
represents a pair of perpendicular straight lines.
81. Bhew that the equation
008 3a (z3 — 8zy9) + 8in 8a (y® — B22y) + Ba (23 +y?) — 4a2=0
represents three straight lines forming an equilateral triangle.
Prove also that its area is 3 ,/3a2.
32, Prove that the general equation
ax® + 2hry + by*+ 292 + 3fy + ¢ =0
represents two parallel straight lines if
h3=ab and bgd=af*.
Prove also that the distance between them is

9 \/ g*-ac
a(a+b)’
33. If the equation

ax?+ 2hzy + by + 292 + 2fy + ¢ =0
represent a pair of straight lines, prove that the equation to the third

pair of straight lines passing through the points where these meet the
axesis

“aa’bv’.

ax? - 2hzy+by’+2gz+2fy+c+4f zy =0,



108 COORDINATE GEOMETRY. [Exs. XIV.]

34. If the equation
az?+ 2haey + by + 39z + 2fy +¢=0
represent two straight lines, prove that the square of the distance of
their point of intersection from the origin is

cla+b)-fi-g*
T ab—h
35. Bhew that the orthocentre of the triangle formed by the

straight lines
az®+2hey + by?=0 and lx+my=1
1s a point (2, y) such that
4 _Y_ a+b

" 36. Hence find the locus of the orthocentre of a trm.ngle of which
two sides are given in position and whose third side goes through a
fixed point.

87. Shew that the distance between the points of intersection of

the straight line

%008a+y sina~p=0
with the straight lines  ax®+2hxy +by?=

2p. /i3~ ab
bcos?a—2hcosasina+asin®a’
Deduce the area of the triangle formed by them.

38. Prove that the product of the perpendiculars let fall from the
point («’, y’) upon the pair of straight lines

az®+ 2hzy +by?=0

ax'3+ 2hx’y’ + by

Jasorram
89, Shew that two of the straight lines represented by the

equation
ayt+ bayd + cay? + dady + exf=0
will be at right angles if
(b+d) (ad + be) + (e — a)* (a+c + ) =0.
40. Prove that two of the lines represented by the equation
azt+ bxdy +cady?+ dzy + ayt=0
will bisect the angles between the other two if
¢+6a=0 and b+d=0.
41, Prove that one of the lines represented by the equation
az®+ bz?y +cxy? + dy?=0
will biseot the angle between the other two if
(8a+c)?(bc+2cd - 8ad) = (b+ 8d)?(be + 2ab — Bad).

is

is



CHAPTER VIL
TRANSFORMATION OF COORDINATES,

127. Ir is sometimes found desirable in the discussion
of problems to alter the origin and axes of coordinates,
either by altering the origin without alteration of the
direction of the axes, or by altering the directions of the
axes and keeping the origin unchanged, or by altering the
origin and also the directions of the axes. The latter case
is merely a combination of the first two. Either of these
processes is called a transformation of coordinates.

‘We proceed to establish the fundamental formule for
such transformation of coordinates.

128. T alter the origin of coordinates without altering
the directions of the axes.
Let OX and OY be the original axes and let the new
axes, parallel to the original, be
O'X' and O'Y'.

Let the coordinates of the new M M P
origin O, referred to the original
axes be A and %, so that, if O'L be , N’
perpendicular to 0X, we have o X!
OL=h and LO' =k. o L N X

Let P be any point in the plane

of the paper, and let its coordinates, referred to the original
axes, be 2 and y, and referred to the new axes let them be
o and /.

Draw PN perpendicular to OX to meet O'X’ in N,
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Then
ON=z, NP=y, ON'=2, and N'P=y.
‘We therefore have
2=0N=0L+O0N' =h+a,
and y=NP=LO'+ N'P=k+y.
The origin is therefore transferred to the point (A, k) when
we substitute for the coordinates x and y the quantities
+h and ¥ +k.

The above article is true whether the axes be oblique
or rectangular.

129. 7o change the direction of the axes of coordinates,
without changing the origin, both systems of coordinates being
rectangular.

Let OX and OY be the original system of axes and 0X'
and OY’ the new system, and let
the angle, X0X’, through which Y P
the axes are turned be called 6. Y

Take any point P in the plane M ,
of the paper. X

Draw PN and PN’ perpen- L X
dicular to OX and OX', and also O
N'L and N'M perpendicular to OX and PN.

If the coordinates of P, referred to the original axes,
be x and y, and, referred to the new axes, be «’ and ¥/, we
have

ON=xz, NP=y, ON'=4, and N'P=y.
The angle
MPN' =90~ MN'P=( MN'O=( X0X'=
‘We then have
#=ON=0L—-MN'=ON cos0—N'Psinf
=acosf—y'sinb....ccvvenrinnnnnnnn. (1),
and y=NP=LN'+ MP=0ON'sin+ N'Pcos 9
=a'sinf+y'coBf........cocoiiininnnn. (2).
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If therefore in any equation we wish to turn the axes,
being rectangular, through an angle § we must substitute

x cosf—y'sinf and x’'sin@ +y cos
for x and y.

‘When we have both to change the origin, and also the
direction of the axes, the transformation is clearly obtained
by combining the results of the previous articles.

If the origin is to be transformed to the point (&, k)
and the axes to be turned through an angle 6, we have to
substitute

h+a'cosf—y'sinf and &+ «'sin G + ' cos

for = and y respectively.

The student, who is acquainted with the theory of projection of
straight lines, will see that equations (1) and (2) express the fact that
the projections of OP on OX and OY are respectively equal to the
sum of the projections of ON’ and N’P on the same two lines.

180. Bx. 1. Transform to parallel azes through the point (-2, 8)

the equation
223+ 4zy + By3— 4z — 22y + T=0.
‘We substitute z=2"— 2 and y=y’+ 3, and the equation becomes
2(z'-2)3+4(2'-2) (y'+8)+5 (v +8)*- 4 (z' - 2) - 22 (y'+38) +7=0,

{.e. 2273 +4x'y’ + by - 223=0.

Bx. 2. Transform to azes inclined at 80° to the original axes the
equation

23+ 2 ,/3zy - y*=2al.
For z and y we have to substitute
«’ 008 30° — ' 8in 80° and 2’ sin 30°+y’ cos 80°,

‘e DY g T,

The equation then becomes

@3-y P+2/B (@3 ~y') (& +y//3) - (&' +y'BP=8a",
i.e. 23— y?=qt,
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EXAMPLES. XV,

1. Transform to parallel axes through the point (1, —2) the
equations
and (2) 22%+y%-4x+4y=0.
2. What does the equation
(o= )i+ (y - Pi=ct
become when it is transferred to parallel axes through
(1) the point (a-¢, b),
(2) the point (a, b—¢)?
8. What does the equation
' (a-b) (z3+92) — 2abz=0
become if the origin be moved to the point (a—a—ib , 0) ?
4, Transform to axes inclined at 45° to the original axes the
equations
1) a*-y*=dl,
(2) 17z%-16zy + 17y3=225,
and (3) y*+at+6a2y3=2,
5. Transform to axes inclined at an angle a to the original axes
the equations
1) 2+y?=r,
and (2) 2+ 2zytan2a-y?=al
8. If the axes be turned through an angle tan—! 3, what docs the
equation 4zy — 823=a? become ?
7. By transforming to parallel axes through a properly chosen
point (h, k), prove that the equation
122% - 10zy + 2y3 + 112~ 5y + 2=0
can be reduced to one containing only terms of the second degree.
8. Find the angle through which the axes may be turned so that
the equation Az +By+C=0

may be reduced to the form z=constant, and determine the value of
this constant.

131. The general proposition, which is given in the
next article, on the transformation from one set of oblique
axes to any other set of oblique axes is of very little
importance and is hardly ever required.
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*182. 7o change from one set of axes, inclined at an
angle o, to another get, inclined at an.angle o', the origin
remaining unaltered.

o T

Let 0X and OY be the original axes, 0.X’ and OY" the
new axes, and let the angle XOX' be 6.

Take any point P in the plane of the paper.

Draw PN and PN’ parallel to OY and OY" to meet O.X
and OX' respectively in N and N', PL perpendicular to 0.X,
and IéV ‘M and N'M’ perpendicular to OL and LP.

ow
Lt PNL=:Y0X=0, and PN'M'=Y'0X =o' +6.
Hence if
ON=xz, NP=y, ON'=2/, and N'P=y,
we bave ysino=NPsino=LP=MN'+MP
=OXN'sin 6 + N'Psin (o' +0),
so that ysino=2'sinf+ gy sin (0’ +6)...ccceeeun.e (1).
Also

z+yco8w=0N+NL=0L=0M+ N'M’
=2 cos0+y cos (0 +0)............... (2).
Multiplying (2) by sinw, (1) by cosw, and subtracting,
we have )
«8in o =2 sin (0 — 0) + ¥/ sin (0 — ' —6)...... (3).
[This equation (3) may also be obtained by drawing a perpen-
dicular from P upon OY and proceeding as for equation (1).] )
The equations (1) and (3) give the proper substitutions
for the change of axes in the general case.
As in Art. 130 the equations (1) and (2) may be obtained by
equating the projections of OP and of ON’ and N’P on OX and a
gtraight line perpendicular to OX,

L. 8
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¥1388. Particular cases of the preceding article.

(1) Suppose we wish to transfer our axes from a
rectangular pair to one inclined at an angle . In this
case o is 90°, and the formule of the preceding article
become

x=acos 0 + y' cos (v + 0),
and y=2a8in 6 + y sin (o’ + 0).
(2) Suppose the transference is to be from oblique

axes, inclined at o, to rectangular axes. In this case o is
90°, and our formulse become

zs8in w =2 sin (0 — ) — ' cos (w—6),
and- ysinw=2asin § + y cos 6.
These particular formule may easily be proved in-
dependently, by drawing the corresponding figures.
Bx. Transform the equation z—:- %—::1 from rectangular azes to
azes inclined at an angle 2a, the new azxis of z being inclined at an angle

bi
Here §= —a and «=2a, so that the formuls of transformation

— a to the old azes and sin a being equal to 'Jb_

(1) become
z=(2'+y)oosa and y=(y'-z’)sina.
Since sin a=$_:’?6—.’, we have ma::/aTaT:—F’ and hence the

given equation becomes
#+y)? _ (-2
Arp T a5
ie. z'y' =1} (a®+b9%).
*134. The degree of an equation 18 unchanged by amy
trangformation of coordinates.
For the most general form of transformation is found

by combining together Arts. 128 and 132. Hence the
most general formulse of transformation are

=1,

weht ,8in (0 —6) y,sm(w—-—w—e),
sin o sin o
and y= k+x,sm0+y,sm(m +0)

81N w sin &
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For = and y we have therefore to substitute expressions
in «/ and y’ of the first degree, so that by this substitution
the degree of the equation cannot be raised.

Neither can, by this substitution, the degree be lowered.
For, if it could, then, by transforming back again, the
degree would be raised and this we have just shewn to be
impossible.

*188. If by any change of axes, without change of origin, the
quantity az?+ 2hzy + by? become
a'2?+ 2N 'y’ + by,
the azxes in each case being rectangular, to prove that
a+b=a’'+V, and ab- h3=a’d’' - K3,

By Art. 129, the new axis of z being inclined at an angle 4 to the
old axis, we have to substitute

2'cosf—y’sin @ and 2’sin 64y cosd
for z and y respectively.
Hence az?+ 2hzy + by?
=a(z' cos 6 —y’sin )%+ 23h (2’ 008 § — y’ sin 8) (2’ sin 6 +y’ cos )
+b (2 8in 6 +y’ cos 6)*

=2"3[a cos? 6 + 2k cos § 8in § + b sin? ]
+2z’y'[ - a cos 6 gin 0+ h (c0s? 6 — 8in?6) + b cos 6 sin 6]
+y'?[a8in36 — 3k cos 0 sin 0+ b cos? 4]

‘We then have
a’'=a cos30 +2h cos A sin § 4+ bsin? 0
=3[(a+b)+(a—b)cos20+2hsin24]............... 1),
b’ =a sin?6 — 2h cos 6 8in 6 + b 00826
=3[(a+b)—(a—Db)cos 20— hsin20]............... @),
and k' = —acos 0 &in 6+ h (cos?d — 8in?6) + b cos 6 sin §
=4[2h 00820~ (G- B)BIN20] ....oveverererrererrenann ).

By adding (1) and (2), we have a’+¥'=a+b.
Also, by multiplying them, we have
40’V = (a+b)? - {(a - b) cos 20+ 2h sin 20},
Henoe 4a’t’ — 4k
= (a+b)?~[{2hsin 20 + (a - b) cos 20}3+ {2h cos 20 ~ (a — b) sin 26}7]
=(a+b)3—[(a—b)3+4h%]=4ab — 413,
so that a't! - Wi=ab- R,
186. To find the angle through which the azes must be turned so

that the expression ax?+ 2hzy + by? may become an expression in which
there is no term involving z'y’.

8—2
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Assuming the work of the previous article the coefficient of z'y’
vanishes if k' be zero, or, from equation (3), if
2h cos 20=(a - b) sin 26,
ie. if tan 20=;g_h—b~ .
The required angle is therefore

. %tan7? (%) .

*187. The proposition of Art. 135 is a particular
case, when the axes are rectangular, of the following more
general proposition. ;

If by any change of axes, without change of origin, the
quantity ax® + 2haxy + by® becomes a'x* + 2h'xy + b'y?, then

a+b—2hcosw @'+ -2 cosw’

sinto sind o’ !
72 20 _ 713
Md gb. h =i—hf’
sinlo ain o
o and o being the angles between the original and final pairs
of axes.

Let the coordinates of any point P, referred to the
original axes, be « and y and, referred to the final axes, let
them be «’ and ¥'.

By Art. 20 the square of the distance between P and
the origin is a2 + 2xy cos w + ¥, referred to the original axes,
and % + 2’y cos o’ + g, referred to the final axes.

‘We therefore always have

2+ 2zycosw + Y =a+ 22’y cos ' + y1...... 1.
Also, by supposition, we have
ao? + 2hay + by = a'x"? + 2h'2'y’ + b'y"......(2).
Multiplying (1) by A and adding it to (2), we therefore have
2*(@+X)+2xy(h+Acosw) + 32 (b+A)
=a2?(a’+ ) + 22y (W + Acos ') + 2 (' + 1) ...(3).

If then any value of A makes the left-hand side of (3) a
perfect square, the same value must make the right-hand
side also a perfect square.

But the values of A which make the left-hand a perfect
square are given by the condition

(A + X cos w)?=(a+A) (b+A),
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t.e. by
X2 (1 - cos?w) + A (@ + b — 2k cos w) + ab— h*=0,
. a+b—-2hcosw ab—-h*
t.e. by PLEDY e el AT 4).
In a similar manner the values of A which make the

right-hand side of (3) a perfect square are given by the
equation

a'+b' -2k cosw’  a'b’ —h?

e S =0 (B)

Since the values of A given by equation (4) are the same
as the values of A given by (5), the two equations (4) and
(5) must be the same,

Hence we have
a+b—-2hcosw_a’'+b’—2h’'cosw’
sin?w - sin? w’ ’
ab—h? a’b’—h7
sinfw ~ sintw’

and

EXAMPLES. XVL

1. The equation to a straight line referred to axes inclined at 30°
to one another is y=2z+1. Find its equation referred to axes
inclined at 45° the origin and axis of z being unchanged.

2. Transform the equation 222+ 8,/3zy+8y?=2 from axes
inclined at 30° to rectangular axes, the axis of z remaining
unchanged.

8. Transform the equation z?+zy +y2=8 from axes inclined at
60° to axes bisecting the angles between the original axes.
4, Transform the equation y?+ 4y cot a —4z=0 from rectangular

axes to oblique axes meeting at an angle a, the axis of z being kept
the same.

5. If z and y be the coordinates of a point referred to a system of
oblique axes, and z’ and y’ be its coordinates referred to another

system of oblique axes with the same origin, and if the formule of
transformation be

z=mz +ny’ and y=m'z’ +ny,
m?+m2-1 mm

prove that s



CHAPTER VIIL
THE CIRCLE.

138. Def. A circle is the locus of a point which
moves so that its distance from a fixed point, called the
centre, is equal to a given distance. The given distance is
called the radius of the circle.

139. To find the equation to a circle, the axes of coordi-
nates being two straight lines through tts centre at right
angles.

Let O be the centre of the circle and let a be its radius.

Let OX and OY be the axes of

coordinates. Y

Let P be any point on the circum- P
ference of the circle, and let its coordi- hi
nates be z and .

Draw PM perpendicular to 0X and X
join OP,

Then (Euc. 1. 47)

OM? + MP* =o',

e x2 4 y2=a?

This being the relation which holds between the coordi-

nates of any point on the circumference is, by Art. 42, the
required equation.

140. To find the equation to a circle referred to any
rectangular axes,
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Let OX and OY be the two rectangular axes.

Let C be the centre of the P
circle and a its radius, Y

Take any point P on the
circumference and draw per- c
pendiculars CM and PN upon
OX ; let P be the point (z, y).

=

Draw CL perpendicular to —
NP (o] M N X
Let the coordinates of C be

% and % ; these are supposed to be known.
We have CL=MN=0N—-OM=x—h,
and LP=NP—NL=NP-MC=y—*k.
Hence, since CL'+ LP*=CP,
we have (x=h)24(y-Kk)2=a?............... (1).
This is the required equation.
EBx. The equation to the circle, whose centre is the point ( — 3, 4)
and whose radius is 7, is
(z+8)+(y-4pP="1,
ie 24924 62— 8y =24,

141. Some particular cases of the preceding article may be
noticed :

(e) Let the origin O be on the circle so that, in this case,
OM3 4+ MC3=a?,
i.e. 3+ k2=al.
The equation (1) then becomes
(z- B+ (y - kp=R1+12,
i.e. 22+ y? - 2hz - 2ky =0.

(8) Let the origin be not on the curve, but let the centre lie on
the axis of z. In this case k=0, and the equation becomes

(z-hp2+y=al.
(y) Let the origin be on the curve and let the axis of z be s
diameter. We now have k=0 and a=Ah, so that the equation becomes
22492 - 2hz=0.

t(g) By taking O at C, and thus making both % and & zero, we
have the case of Art. 139,
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(¢) The circle will touch the axis of z if MC be equal to the
radius, i.e. if k=a.
The equation to a eirole touching the axis of z is therefore
2493 — 2ha — Bky + h?=0.
Similarly, one touching the axis of y is
28+ y3 - 2hx — Bky + k2=0.

142. 7o prove that the equation
4 D+ +22+2fy+e=0.nnii. 1),
always represents a circle for all values of g, f, and ¢, and to

Jfind its centre and radius. [The axes are assumed to be
rectangular.]

This equation may be written
(@ + 292+ g7 + (P + 2y +f) =g +/* —¢,
@+ 9P+ (+/V =W F T

Comparing this with the equation (1) of Art. 140, we
see that the equations are the same if

h=—g, k=—f, and a= g+ —c.

Hence (1) represents a circle whose centre is the point
(—9, —f), and whose radius is ,/g* + f*—c.

If ¢* + f*> ¢, the radius of this circle is real.

If g* + f?=c, the radius vanishes, i.e. the circle becomes
a point coinciding with the point (~g, —f). Such a circle
is called a point-circle.

If ¢+ f® <¢, the radius of the circle is imaginary. In
this case the equation does not represent any real geo-
metrical locus. It is better not to say that the circle does

not exist, but to say that it is a circle with a real centre
and an imaginary radius.

¢ Bx. 1. The equation 22+y2+42~6y=0 can be written in the
orm
(@+2)+(y - 8p=13=(JI3p,

and therefore represents a eircle whose centre is the point (-2, 8) and
whose radius is 4/13.
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Bx. 8. The equation 4523+ 45y% - 60z + 86y + 19=0 is equivalent

+yt-fz+py=-1t,
ie. @-H'+ @+ 3=+ - =4,
and therefore represents a circle whose centre is the point (§, —$) and

whose radius is 5

143. Condition that the general equation of the second
degree may represent a circle.

The equation (1) of the preceding article, multiplied by
any arbitrary constant, is a particular case of the general
equation of the second degree (Art. 114) in which there is
no term containing xy and in which the coefficients of 2?
a.nd y* are equal.

" The general equation of the second degree in rectangular
coordinates therefore represents a circle if the coefficients
of x2 and y2 be the same and if the coefiicient of xy
be zero.

144. The equation (1) of Art. 142 is called the
general equation of a circle, since it can, by a proper
choice of g, f, and ¢, be made to represent any circle.

The three constants g, f, and ¢ in the general equation
correspond to the geometrical fact that a circle can be found
to satisfy three independent geometrical conditions and no
more. Thus a circle is determined when three points on it
are given, or when it is reqmred to touch three straight
lines.

148. To find the equation to the circle which is described on the
line joining the points (z,, y,) and (z,, y3) as diameter.

Let 4 be the point ( ) and B be the pomt , and let the
coordinates of any poin z&’ g}m the circle be & and (z’ w):

The equation to AP is (Art. 62)

k-
y- 11—
and the equation to BP is

But, since APB is a semmrele the angle APB is a. right angle,
and hence the straight lines (1) and’ (2) are at right angles.
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Hence, by Art. 69, we have

i.e (h—2) (h - 25) + (k- v,) (k—ya) =0.
But this is the condition that the point (k, k) may lie on the curve
whose equation is

(z-2)) (2~ zq) + (¥ - 1) (¥ — ¥2) =0.
This therefore is the required equation.
146. Intercepts made on the azes by the circle whose equation is
azd+ayd+ 39z +2fy+¢=0 .......ouvvrnnenn.n. 1).

The abscisss of the points where the circle (1) meets the axis of «,
i.e. y=0, are given by the equation

azr®+29z+¢=0 ........... (2).

The roots of this equation being z, and z,,
we have

2
n+23= - ;y’
and xﬁ,:%. (Art. 2.)
Henoce

4, Ay=2,~ 2,= [ (1, + 2,0 - 4z,
= 4;0: - 4._c= 2 ﬂ’;a_c .
[} a a
Again, the roots of the equation (2) are both imaginary if g*<ac.
In this case the circle does not meet the axis of « in real points, i.e.
geometrically it does not meet the axis of z at all.
The circle will touch the axis of z if the intercept 4,4, be just
zero, i.e. if g?=ac.
It will meet the axis of z in two points lying on opposite sides of

the origin O if the two roots of the equation (2) are of opposite signs,
1. e. if ¢ be negative.

147. Bx.1. Find the equation to the circle which passes through
the points (1, 0), (0, — 6), and (3, 4).
Let the equation to the circle be
224+ Y2+ 202+ 2y +¢=0 ......cuvurvnenns e (D).

Since the three points, whose coordinates are given, satisfy this
equation, we have

14294¢=0....ccovrrrrrrrerrrecrernnne (@),
836-12f+¢=0.....ccceuuee
and 254+6g48f+6=0..c00ucerererrrnnriennnnnnnns 4).
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Subtracting (2) from (8) and (8) from (4), we have

99+ 197 =85,
and 6g+20f=11.
Hence f=4 and g=-12,

Equation (2) then gives c=148,
Substituting these values in (1) the required equation is
423+ 4y% — 142z 4+ 472 4 188=0.

Ex. 2. Find the equation to the circle which touches the azis of y

at a distance +4 from the origin and cuts off an intercept 6 the
azis of z.

Any cirele is 22+ y3+ 29z + 3fy + ¢ =0.
This meets the axis of y in points given by
¥ +2fy +¢=0.

The roots of this equation must be equal and each equal to 4, so
that it must be equivalent to (y —4)?=0.

Hence 2f= -8, and ¢=16.
The equation to the circle is then

23+ y*+ 29z -8y +16=0.
This meets the axis of z in points given by

29429z +16=0,
1.e. at points distant

—g+./g"~16 and -g- . f5*~16.
Hence 6=2./g7-16.
Therefore g= + 5, and the required equation is
2*+y3+10z -8y +16=0.

There are therefore two circles satisfying the given conditions.
This is geometrically obvious.

EXAMPLES. XVIL
Find the equation to the circle
1. Whose radius is 3 and whose centre is (-1, 2).
2. Whose radius is 10 and whose centre is (-5, —6).
8. Whose radius is a+ b and whose centre is (s, —b).
4. Whose radius is 4/a7— b and whose centre is (-a, - b).

Find the coordinates of the centres and the radii of the circles
whose equations are

5, 2+yd-4z-8y=41. 6. B8z%+3y?-bz-6y+4=0,
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7. +yi=k(z+k). 8. #*+y*=2z-2y.
NT1Hm? (22 +y?) - 22 - 2mey=0.
Draw the circles whose equations are
10. 2?+y%=2ay. 11. 3224 8y%=4x.
12. 52%+5y2=2z+3y.

138. Find the equation to the circle which passes through the
mlazl (14!,- 22, and (4, — 3) and which has its centre on the straight
o 3z +

14. Find the equation to the circle pa.ssmg through the points
(0, a) and (b, ), and having its centre on the axis of z.

Find the equations to the circles which pass through the points
15. (0, 0), (a, 0), and (0, b). 16. (1, 2), (8, —4), and (5, - 6).
17. (1: 1)’ (21 “'l)v and (3’ 2)- 18. (5’ 7)1 (81 1): and (l, 3).
19. (a, b), (a, -b), and (a+d, a-b).

20. ABCD is a square whose side is a; taking 4B and AD as
axes, prove that the equation to the circle circumscribing the square is

st yi=a(z+y).

21. Find the equation to the circle which passes through the
origin and cuts off intercepts equal to 8 and 4 from the axes.

22. Find the equation to the circle passing through the origin
and the points (a, b) and (b, a). Find the lengths of the chords that
it cuts off from the axes,

23. Find the equation to the circle which goes through the origin
and outs off intercepts equal to & and k from the positive parts of the
axes,

24, Find the equutxon to the circle, of radius a, which passes
through the two points on the axis of z which areat a dlstsnee b from

the origin.
Find the equation to the circle which
25. touches each axis at a distance 5 from the origin.
26. touches each axis and is of radius a.
27. touches both axes and passes through the point (-2, — 3).

28. touches the axis of z and passes through the two points
(1, -2) and (3, —4).

29, touches the axis of y at the origin and passes through the
point (b, ¢).




XVIL] TANGENT TO A CIRCLE. 125

80. touches the axis of z at a distance 8 from the origin and
intercepts a distance 6 on the axis of y.

81. Points (1, 0) and (2, 0) are taken on the axis of z, the axes

ing rectangular. On the line joining these points an equilateral
triangle is described, its vertex being in the positive quadrant. Find
the equations to the circles described on its sides as gmmateu.

82. If y=mx be the equation of a chord of a circle whose radius is
a, the origin of coordinates being one extremity of the chord and the
axis of x being a diameter of the circle, prove that the equation of a
circle of which this chord is the diameter is

(1+m?) (22 +y?%) - 2a (2 +my)=0.

33. Find the equation to the circle passing through the points
(12, 43), (18, 89), and (42, 3) and prove that it also passes through
the points (- 54, — 69) and (-81, - 38).

34, Find the equation to the circle circumscribing the quadrilateral
formed by the straight lines

2+8y=2, B8z-2=4, z+3y=8, and 2r-y=8.

85. Prove that the equation to the circle of which the points
(z,, ¥,) and (z,, y,) are the ends of a chord of a segment containing an
angle 0 is

(z-2)) (@- 2+ ¥ -v1)(y-ya)
& 00t 0 [(z— ;) (y - ya) — (z —25) (¥ — ,)]1=0.
86. Find the equations to the circles in which the line joining the

points (a, b) and (b, —a) is a chord subtending an angle of 45° at any
point on its circumference.

148. Tangent. Euclid in his Book III. defines the
tangent at any point of a circle, and proves that it is always
perpendicular to the radius drawn from the centre to the
point of contact.

From this property may be deduced the equation to the
tangent at dny point («, y) of the circle 2* + y* = a?.

Fo)r let the point P (Fig. Art. 139) be the point
(=, ¥)

The equation to any straight line passing through P is,
by Art. 62,

Y-y =m(@—-=o) . oo (1).
Also the equation to OP is

y:y;,w ........................ 2
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The straight lines (1) and (2) are at right angles, ¢.¢. the
line (1) is a tangent, if

mxZ=—1, ~ (Art. 69)
te if m=—=.

Substituting this value of m in (1), the equation of the
tangent at («, ¥') is

& /
Y-y =—$7(m—w),
i.e. xx' +yy =2 +y 3). .

But, since («, y') lies on the circle, we have «'* + ¥ =a?,
and the required equation is then

xx’' 4 yy’ = al

149. In the case of most curves it is impossible to
give a simple construction for the tangent as in the case of
the circle. It is therefore necessary, in general, to give a
different definition.

‘Tangent. Def. Let P and @ be any two points, near
to one another, on any curve.

Join PQ; then PQ is called a
secant.

The position of the line PQ when
the point @ is taken indefinitely close
to, and ultimately coincident with, the
point P is called the tangent at P.

The student may better appreciate
this definition, if he conceive the curve
to be made up of a succession of very small points (much
smaller than could be made by the finest conceivable drawing
pen) packed close to one another along the curve. The
tangent at P is then the straight line joining P and the
next of these small points.

150. To find the equation of the tangent at the point
(&, y') of the circle o + 42 = a.
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Let P be the given point and @ a point (x”, ¥”) lying on
the curve and close to P. '

The equation to PQ is then
y-y’:i,,:‘:::(a:—x') ............... (1)

Since both («', ¥) and («”, ¥”) lie on the circle, we have
a® +y? =d,
and 7+ yt=d'
By subtraction, we have A
" —a® +y" -y =0,
i.e. @ -2) (@ + &)+ (y" - ¥) (" +¥) =0,
t.e. y#;_:_w,"'z“
- yY+y

Substituting this value in (1), the equation to PQ is

' +a
- =—-— x—x’ ............... 2 o
| vy =-S5t @—d) @
Now let @ be taken very close to P, so that it ulti-
mately coincides with P, i.e. put 2" =2 and y’'=y'.
Then (2) becomes
2 ,
.’/—.'/'=-'27(3’—x),
t.e. vy + o =a?+y"=a’.
The required equation is therefore

It will be noted that the equation to the tangent
found in this article coincides with the equation found
from Euclid’s definition in Art. 148.

Our definition of a tangent and Euclid’s definition there-
fore give the same straight line in the case of a circle.
1581. To obtain the equation of the tangent at any point
(', ¥') lying on the circle
o+t + 292+ 2fy+¢=0.
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Let P be the given point and @ a point (", y”) lying on
the curve close to P.

The equation to PQ is therefore
vy =4 @) o Q).
Bince both («, ¥) and (¢, y”) lie on the circle, we have
2+ Y+ 292 + 2y +c=0............ (2),
and 2+ y" + 292" + 2y +¢=0 .......... 3)-

By subtraction, we have
2P -yt -y + 29 —-2)+ Y (¥ -y)=0,
te. (2" —o)(a"+2 +29)+ (¥ -y) ' +y +2f) =0,
Y-y '+ +2 '

e 7 Yy
Substituting this value in (1), the equation to PQ be-
comes
_ @' +ad+2 ,
y—j-—m(x—x) ......... ,...(4).

Now let @ be taken very close to P, so that it ultimately
coincides with P, i.e. put 2" =2/ and y"' =y
The equation (4) then becomes
4 + ,
y-y=- 5@
e Yy +f)+re@+g) =y Y +f)+2 (@ +g)
=2 +y" + g2’ + fyf
==92'—fy ¢

by (2).
This may be written
X' +yy+8(E+x)+f(y+y)+c=0
which is the required equation.
152. The equation to the tangent at (x, y’) is there-

fore obtained from that of the circle itself by substituting
ax’ for o, yy' for 3, « + a' for 2z, and y + ¥ for 2.
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This is a particular case of a general rule which will be
found to enable us to write down at sight the equation to
the tangent at (/, /) to any of the curves with which we
shall deal in this book.

153. Points of intersection, in general, of the straight
line .

wwrth the circle

The coordinates of the points in which the straight line
(1) meets (2) satisfy both equations (1) and (2).

If therefore we solve them as simultaneous equations
we shall obtain the coordinates of the common point or
points.

Substituting for y from (1) in (2), the abscissse of the
required points are given by the equation

& + (mx + ¢ =d’,
ie. 2 (1+m") + 2mex + *—a’=0 ......... (3).
The roots of this equation are, by Art. 1, real, coinci-
dent, or imaginary, according as
(2me)* — 4 (1 + m®) (¢ — @) is positive, zero, or negative,
1.e. according as
a* (1 + m®) — ¢* is positive, zero, or negative,
i.e. according as
dis<=or>a'(l +m?). .

In the figure the lines marked I, I, and III are all

parallel, 4.e. their equations all have the same “m.”

L. 9
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The straight line I corresponds to a value of ¢* which
is <a®(1 + m®) and it meets the circle in two real points.

The straight line III which corresponds to a value of c*,
> a? (1 + m®), does not meet the circle at all, or rather, as in
Art, 108, this is better expressed by saying that it meets
the circle in imaginary points. C

The straight line II corresponds to a value of ¢*, which
is equal to a* (1 + m*), and meets the curve in two coincident

points, i.e. is a tangent.

154. We can now obtain the length of the chord inter-
cepted by the circle on the straight line (1). For, if =, and
x, be the roots of the equation (3), we have

2me c—a?
BB T 80 mE =

Hence

& — = (e + %)‘—4wst=—lf+m,~/m’c’—(0'—a')(l +m’)

=%m,,/a’(l +m®)—c'.
If y, and y, be the ordinates of @ and R we have, since
these points are on (1),
$1—Ya= (M, + 0) — (M + ¢) =m (2, — ).
Hence

QR =y~ y)' + (7 — @) =T + " (2, — )

2 2
—g /e +m)-c
1+m
In a similar manner we can consider the points of inter-

section of the straight line y = ma + & with the circle
_ 2+ 3+ 2z + 2y +¢=0.
1B85. The straight line
y=mz+ a1 +m’
18 always a tangent to the circle
o+ y'=d,
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As in Art. 153 the straight line

y=mx+c
meets the circle in two points which are coincident if
c=a,JT +m"

But if a straight line meets the circle in two points
which are indefinitely close to one another then, by Art.
149, it is a tangent to the circle.

The straight line y =m + ¢ is therefore a tangent to the
circle if

c=a,JT+m,
t.e. the equation to any tangent to the circle is
y=mx+aIfmi........ .. (1).

Since the radical on the right hand may have the + or —
sign prefixed we see that corresponding to any value of m
there are two tangents. They are marked II and IV in
the figure of Art. 153.

186. The above resuli may also be deduced from the equation
(8) of Art. 160, which may be written

vy
4
Put —:—;,=m, so that «’= —my’, and the relation 22+ y"3=a3 gives
Y (m+1)=a2, i.e. ‘%=,,/1+_ﬁ".
The equation (1) then becomes

y=mz+a/I+m,
This is therefore the tangent at the point whose coordinates are

M2  and -2
N1+md N
187. If we assume that a tangent to a circle is always

dicular to the radius vector to the point of contact, the resﬁt o}
Art. 155 may be obtained in another manner.

For a tangent is a line whose perpendicular distance from the
centre is equal to the radius.

9—2
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The straight line y =mz+ ¢ will therefore touch the circle if the
perpendicular on it from the origin be equal to a, i.e. if

¢
Jiw
ie if c=a \/T+ms
m; method is not however applicable to any other curve besides the
circle.
188. Bx. Find the equations to the tangents to the circle
B +y? - 6z+4y=12
which are parallel to the straight line
4z+3y+5=0.
Any straight line parallel to the given one is
4z 43y +C=0........ PR 1).
The equation to the circle is
(z—8)0+(y+2)*=5%
The straight line (1), if it be a tangent, must be therefore such
that its distance from the point (3, —2) is equal to +85.
Hence Eo —— =5, (Art. 75),

8o that C=-6+25=19 or - 31,
The reqnired tangents are therefore
42+3y+19=0 and 4z +38y-381=0.

159. Normal. Def. The normal at any point P of
a curve is the straight line which passes through P and is
perpendicular to the tangent at P.

To find the equation to the normal at the point (z', ¥') of
(1) the circle

2 +yt=d',
and (2) the circle
2+ + 292+ 2y +¢=0.
(1) The tangent at (, ¥) is

' + yy =a?,

. 2 a

%.e. =——2+—.
Y Yy
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The equation to the straight line passing through (', y')

perpendicular to this tangent is
y-y =m(@—2),
where mx (_ ;i/) -1, (Art. 69),
e m= %, .
The required equation is therefore
y—y =¥ @—a),
i.e. . Zdy—wmy =0.

This straight line passes through the centre of the circle
which is the point (0, 0).

If we assume Euclid’s propositions the equation is at once
written down, since the normal is the straight line joining
(0, 0) to (, ¥)-

(2) The equation to the tangent at («, y’) to the circle

E+y+ 22+ 2 +c=0
_:c’+gx_yw'+f3/+c
y+/ y+f

The equation to the straight line, passing through the
point (%, y') and perpendicular to this tangent, is

is y= (Art. 151.)

y—y =m(x—o),
where mx -35/'—::-9 ——1, (Art. 69),
.. m=y—:—-'-——-f
x+g

The equation to the normal is therefore
+ ,
y_y,-=3/' f(z_w)’

z+g
i.e y@+g)—x/ +1)+ & —gy =0.
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EXAMPLES. XVIIL

Write down the equation of the tangent to the circle

1. 2*+y*-8z+10y=15 at the point (4, - 11).

2. 42244316z +24y=117 at the point (-4, —34).

Find the equations to the tangents to the circle

3. #%+y3=4 which are parallel to the line z+2y+3=0.

4, z3+y?+2gz+2fy +c=0 which are parallel to the line
z+2y - 6=0.

5. Prove that the straight line y=x+c¢./2 touches the circle
22+y3=c% and find its point of contact.

6. Find the condition that the straight line cz — by 4 4*=0 may
touch the circle #?+y3=az + by and find the point of contact.
7. Find whether the straight line z+y =2+ /2 touches the circle
3’+y’—28—2y+1=0.
8. Find the condition that the straight line 8z+4y=k may
touch the circle 22+ y3=10z.
9. Find the value of p so that the straight line
2008 a+ysina—p=0
may touch the circle
224-y3 - 2az 008 o — by 8in a — a?gin2a=0.
10. Find the condition that the straight line Az+By+C=0 may
touch the circle
(-ap+(y - bp=er.
h]i'lfx Find the equation to the tangent to the circle z3+y*=a?
whig
(i) is parallel to the straight line y=mz+c,
(ii) is perpendiocular to the straight line y=mz+c,
(iii) passes through the point (b, 0),
and (iv) makes with the axes a triangle whose area is a3.
12. Find the length of the chord joining the points in which the
straight line
x Y
atp=!
meets the cirele 2+yi=1,

138. Find the equation fo the circles which pass through the origin
and out off equal a from the straight lines y =2z and y= - z.
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14. Find the equation to the straight lines joining the origin to
the points in which the straight line y=mz + ¢ cuts the circle
23+ y3=2az + 2by.
Hence find the condition that these points may subtend a right
angle at the origin.
. Find also the condition that the straight line may touch the
Find the equation to the circle which
15. has its centre at the point (3, 4) and touches the straight line
bz+12y=1.
16. touches the axes of coordinates and also the line
aty=h
the centre being in the positive quadrant.
17. has its centre at the point (1, —3) and touches the straight
line 2z -y - 4=0.
18. Find the general equation of a circle referred to two perpen-
dicular tangents as axes.

19. Find the equation to a circle of radius » which touches the
axis of y at & point distant A from the origin, the centre of the circle
being in the positive quadrant.

Prove also that the equation to the other tangent which passes
through the origin is
. (- B3) 2+ 2rhy =0.

- 90. Find the equation to the circle whose centre is at the point
(«, B) and which passes through the origin, and prove that the
equation of the tangent at the origin is

az+ By =0. .

21. Two circles are drawn through the points (a, 5a) and (4a, a)
to touch the axis of 5. Prove that they intersect at an angle tan—14p,

29. A circle passes through the points ( -1, 1), (0, 6), and (5, 5).
Find the points on this circle the tangents at wﬁio&’m pz.ral.lel go the
straight line joining the origin to its centre.

180. 7o shew that from any point there can be drawn
two tangents, real or imaginary, to a circle.

Let the equation to the circle be #* + y*=a? and let the
given point be (x,, ,). [Fig. Art. 161.]

The equation to any tangent is, by Art. 155,
y=mz+a,/1+m
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If this pass through the given point (x,, ;) we have

Y e S ).
This is the equation which gives the values of m corre-
sponding to the tangents whlch pass through (,, ).
Now (1) gives
h—mo,=a ~/ l'i'—m”
t.e. Y — 2mayy, + min? = a® + a*m?,
s.e. m? (2, — a®) — 2mayy, + Y —a?=0 ...... (2)-
The equation (2) is a quadratic equation and gives
therefore two values of m (real, coincident, or imaginary)

corresponding to any given values of z, and y,. For each
of these values of m we have a corresponding tangent.

The roots of (2) are, by Art. 1, real, coincident or
imaginary according as
(22,9,)* — 4 (=, — @®) (3,2 — @®) is positive, zero, or negative,
i.e. according as

a® (—a® + z,? + y,%) is positive, zero, or negative,

i.¢. according as 2+ ZEat

If 2?2+ y,?> a% the distance of the point (71, %) from
the centre is grea.t.er than the radius and hence it lies outside
the circle.

If 2+ y,*=a? the point (z,, y,) lies on the circle and
the two coincident tangents become the tangent at (z,, y,).

If 2+ y,% <a? the point (z,, y,) lies within the circle,
and no tangents can then be geometrically drawn to the
circle. It is however better to say that the tangents are

imaginary.

161. Chord of Contact. Def. If from any point
. T without a circle two tangents 7P and 7'Q be drawn to
the circle, the straight line PQ joining the points of
contact is called the chord of contact of tangents from 7'
To find the equation of the chord of contact of tangents
?mwn) to the circle &*+y*=a® from the external point
L1y %
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Let T be the point (, y,), and P and @ the points
(«, ¥) and (2, &) respectively.

The tangent at P is
2 +yy =a®....... (1),
and that at Q is
o’ +yy =a® ....... 2)

Since these tangents pass through
T, its coordinates (x,, y,) must satisfy
both (1) and (2).

Hence 20 + Yy =0 i 3),
and 2@ Yy =0 e, (4).

The equation to PQ.is then
xx +yy;=at ... (5)

For, since (3) is true, it follows that the point (<, ¥/),
i.e. P, lies on (5).

Also, since (4) is true, it follows that the point (", y"),
i.6. @, lies on (b).

Hence both P and @ lie on the straight line (5), s.e.
(5) is the equation to the required chord of contact.

If the point (x;, y,) lie within the circle the argument
of the preceding article will shew that the line joining the
(imaginary) points of contact of the two (imaginary)
tangents drawn from (x,, y,) is @, + yy, =a’

‘We thus see, since this line is always real, that we may
have a real straight line joining the imaginary points of
contact of two imaginary tangents.

162. Pole and Polar. Def. If through a point
P (within or without a circle) there be drawn any straight
line to meet the circle in @ and R, the locus of the point of
intersection of the tangents at @ and R is called the polar
of P; also P is called the pole of the polar.

In the next article the locus will be proved to be a
straight line.
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163. 7o find the equation to the polar of the pot
(%1, 9,) with respect to the circle a® + y3 =a’. pond

Let QR be any chord drawn through P and let the
tangents at @ and R meet in the point 7' whose coordinates
are (h, k).

. Hence QR is the chord of contact of tangents drawn
from the point (k, k) and therefore, by Art. 161, its
equation is wxh + yk=a’

Since this line passes through the point (z, z) we

have .
2h+yk=a......cceunnnnnnn.. (1).

Since the relation (1) is true it follows that the
variable point (%, k) always lies on the straight line whose
_equation is

Hence (2) is the polar of the point (z,, ¥,).
In a similar manner it may be proved that the polar of

(% %) With respect to the circle
e +yl+ 22+ 2fy+c=0
is ax, + Yy +g (@ +2) +f (y+9) +¢=0.

164. The equation (2) of the preceding article is the
same as equation (5) of Art. 161. If, therefore, the point
(%1, 1) be without the circle, as in the right-hand figure,
the polar is the same as the chord of contact of the real
tangents drawn through (z,, ¥,).

If the point (z;, ) be on the circle, the polar coincides
with the tangent at it. (Art. 150.)
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If the point (=, 4,) bé within the circle, then, as in
Art. 161, the equation (2) is the line joining the (imaginary)
points of contact of the two (imaginary) tangents that can
be drawn from (x,, %,).

‘We see therefore that the polar might have been
defined as follows:

The polar of a given point is the straight line which
passes through the (real or imaginary) points of contact of
tangents drawn from the given point ; also the pole of any
straight line is the point of intersection of tangents at the
points (real or imaginary) in which this straight line meets
the circle.

165. Geometrical construction for the polar of a point.
The equation to OP, which is the line joining (0, 0) to
) (=1, 1), is

By Art. 69, the lines (1) and (2) are perpendicular to
o?e another. Hence OP is perpendicular to the polar
of P.

Also the length  OP=,/z7+y3,
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and the perpendicular, OX, from O upon (2)

a’
NEARES |

Hence the product ON. OP = a’.

~ The polar of any point P is therefore constructed thus :

Join OP and on it (produced if necessary) take a point &N
such that the rectangle ON . OP is equal to the square of
the radius of the circle.

Through N draw the straight line ZL’ perpendicular to
OP; this is the polar required.

[It will be noted that the middle point N of any chord LI Lies on'
the line joining the centre to the pole of the chord.] :

166. To find the pole of a given line with respect to
any circle.
Let the equation to the given line be
Az+ By +C=0................... (1).
(1) Let the equation to the circle be '
2 +y?=a?,
and let the required pole be (z;, ;).

Then (1) must be the equation to the polar of (z,, y,),
t.e. it is the same as the equation

Yy —at=0 .. (2).
Comparing equations (1) and (2), we have
@ _h_-d
4B (¢
- A 2 —_ 'B 2
80 that B=—5d and h=—p"

The required pole is therefore the point

(- ga’, —ga’).

(2) Let the equation to the circle be
&+ 92 + 2g% + 2fy + ¢ =0.
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If (x, v) be the required pole, then (1) must be
equivalent to the equation
o + Yy +9 (@ + @) +f(y +3)+e=0,  (Art. 163)
s.e. 2(r+9)+y @+ +go +fin+e=0...... (3).
Comparing (1) with (3), we therefore have
sty _nrS_gmtSnte
= c .

4 B
By solving these equations we have the values of
and y,.

Bx. Find the pole of the straight line

92 +y—28=0.....cc..ccevvrrnrnnnnnnnnn (04]
wwith respect to the circle

2284+ By~ Bz 45y — T=0....ooverrerreerrrens @.

If (z,, 4,) be the required point the line (1) must coincide with the
polar of (z,, y,), whose equation is

22, + 29y, - Hz +2) +4(y +y,) - T=0,
ie. z (42, - 8)+y (4y,+5) - 8, + 5y, 14=0............ ®).
Sinoe (1) and (3) are the same, we have
4z,-3 4y +85_ -8z, +by,-14
9 1 -28
Henoce z, =9y, +13,
and 3z, - 117y, =126

ving these equations we have z,=38 and y,= -1, so that the
reqnmed point is (3, -1).

167. If the polar of a point P pass through a point T,
then the polar of T passes through P.

Let P and T be the points (z,, v,) and (=, y,) re-
spectively. (Fig. Art. 163.)

The polar of (z,, ) with respect to the circle
@ +y'=a®is

@, + Yy, = a*.
This straight line passes through the point 7' if
T+ Yy =it 1).
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Since the relation (1) is true it follows that the point
(21, %), t.e. P, lies on the straight line xx, + yy, = a? which
is the polar of (x,, ¥,), t.e. T, with respect to the circle.

Hence the proposition.

Cor. The intersection, 7', of the polars of two points,
P and @, is the pole of the line PQ.

168. To find the length of the tangent that cam be
drawn from the point (x,, y,) to the circles

1) #2+y=a}
and (2) 2*+3*+ 292+ 2y +¢=0.

If T be an external point (Fig. Art. 163), 7Q a tangent

and O the centre of the circle, then 7'QO is a right angle

and hence
T@*= 01" - 0@

(1) If the equation to the circle be 2* + y?=a? O is the
origin, 0T = x;* + y,%, and 0@Q*=a?

Hence TQ*=a+ y,* — a®

(2) Let the equation to the circle be

2+ + 29 + 2fy + ¢ =0,
s.e +9)?+ @+ )P=g+—c.
In this case O is the point (— g, —f) and
0@ = (radius)® =g + /2 —ec.

Hence  OT*=[z,—(—9)*+[n— (=)} (Art. 20).

=@ +9)"'+(n+/)

Therefore TQ*=(x,+g)*+ (4, +/)* — (9 +/2—¢)

=a?+ 9’ + 292, + 2fy, +c.

In each case we see that (the equation to the circle
being written so that the coefficients of a* and y* are each
unity) the square of the length of the tangent drawn to the
circle from the point (x,, v,) is obtained by substituting 2,
and y, for the current coordinates in the left-hand member
of the equation to the circle.

*169. To find the equation to the pair of tangents that
can be drawn from the point (x,, 4,) to the circle «* + y*=a?




PAIR OF TANGENTS FROM ANY POINT. 143

Let (h, k) be any point on either of the tangents fro
(=1, ) ‘

Since any straight line touches a circle if the perpen-
dicular on it from the centre is equal to the radius, the
perpendicular from the origin upon the line joining (2, ¥,)
to (A, k) must be equal to a.

The equation to the straight line joining these two
points is
y-th= =Y (@)
1 h -z d
i.e. y(h—a)—x (k—y,) + ke, — hy, =0.
Hence ——kz‘-:-_¢ =a,
Jh—zp+ k-y)
so that (e, — k) = a® [(h — ) + (K — 9,)7]
Therefore the point (%, k) always lies on the locus
(ty —zy)=a*[(e—2)* +(y—9)] .ooeenne 1).
This therefore is the required equation.
The equation (1) may be written in the form
2 (9! -a) + 9 (@' - o) —a' (m+y)
= 2wymxyy, — 20", — 2ayy,,
se. (2 +y7—d°) (22 +y?— a®) =2’n, + y'y,? + ot + 2xyz,y,
— 2a%cx, — 2a%yy, = (22, + Yy, — @) ... (2).

#170. In a later chapter we shall obtain the equation to the pair
of tangents o any ocurve of the second degree in a form analogous
to that of equation (2) of the previous article.

Similarly the equation to the pair of tangents that can be
drawn from (z,, ;) to the circle

(@=-1P+(y-g)*=a
s {(z-/)'+@-9)*-a*} {(# -+, - 9)*- 0%}
={e-N(n-N+y-9) ) -9)-aP.....(0).
If the equation to the eircle be given in the form
: 22+2+ 292+ 2fy +c=0
the equation to the tangents is, similarly,
(z*+y*+ 292 + 2fy + ) (2,3 + ¥, 2+ 297, + 2y, + )
=[zz,+yy1+9 (2+@) +f [y +y) +cP......2)
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EXAMPLES. XIX.

Find the polar of the point
1. (1, 2) with respect to the circle 23 +y2=17.
2. (4, —1) with respect to the circle 222+ 2y3=11.
8. (-2, 8) with respect to the circle
2l +y?— 4z -6y +5=0.
4, (5, —3) with respect to the circle
8::’+3y’-7z+8y-9=0.
5. (a, —b) with respect to the circle
22+ y3+ 2az — by + a?— b2=0.
Find the pole of the straight line
6. z+2y=1 with respect to the circle z2+y3=5.
7. 2z-y=6 with respect to the circle 522+ 5y*=9.
8. 2z+y+12=0 with respect to the circle
al+y?-4r+8y-1=0.
9, 48z - 54y 4 53=0 with respect to the circle
822+ 8y3+ bz - Ty +2=0.
10. az+by+8a?+3b2=0 with respect to the circle
23 +y3+2az + 2y =a?+ b2
Tangents are drawn to the circle z2+y?=12 at the points

11.
where it is met by the circle z3+y3— 6z + 8y — 2=0; find the point of
intersection of these tangents.

12. Find the equation to that chord of the circle z®+y2?=81 which
is bisected at the point (-2, 8), and its pole with respect o the circle.
13. Prove that the polars of the point (1, — 2) with respect to the
circles whose equations are
) 2+y3+6y+5=0 and 23+y3+22+8y+65=0
coincide; prove also that there is another point the polars of which
with respect to these circles are the same and find its coordinates,

14. Find the condition that the chord of contact of tangents from
thethPOint g’, y’) to the circle z3+y%=a? should subtend a right angle
at the centre.

15. Prove that the distances of two points, P and @, each from
the polar of the other with respect to a circle, are to one another
inversely as the distances of the points from the centre of the circle,

16. Prove that the polar of a given point with respect to any one
of the circles 22+ y2—2kz+¢3=0, where & is variable, always passes
through a fixed point, whatever be the value of k.
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17. Tangents are drawn from the point (h, k) to the circle
22+y?=a?; prove that the area of the triangle formed by them
and the straight line joining their points of contact is

a(h+k - a.’)‘ .
h3+ k3
Find the lengths of the tangents drawn

18. to the circle 223+ 2y?=3 from the point ( -3, 3).

19. to the circle 822+ 3y? - 7z — 6y =12 from the point (6, - 7).

90, to the circle 23+ 33+ 2bz — 3b3=0 from the point

(a+d, a-b).
21. Given the three circles
23+4+y3-16z+60=0,
8234 3y2 - 36z + 81=0,
and 23+ y? - 162 -12y+84=0,
find (1) the point from which the tangents to them are equal in
length, and (2) this length.

22. The distances from the origin of the centres of three circles
23 +y? -2 z=c? (where ¢ is a constant and A\ a variable) are in
geometrical progression ; prove that the lengths of the tangents drawn
to them from any point on the circle 22+ y2=c?are also in geometrical

progression.
23. Find the equation to the pair of tangents drawn
(1) from the point (11, 3) to the circle z?+y2=65,
(2) from the point (4, 5) to the circle
222+ 2y% - 8z + 12y + 31 =0.

171. To find the general equation of a circle referred
to polar coordinates.

Let O be the origin, or pole, OX the initial line, ¢ the
centre and a the radius of the
circle.

Let the polar coordinates of C
be R and a, so that OC =R and

¢t X0C=a. »

. Let a radius vector through O
at an angle @ with the initial line
cut the circle in P and Q. Let
OP, or 0Q, be r.

L. 10
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Then (7'rig. Art. 164) we have
CP2=0C*+ OP*-20C . OP cos COP,
i.e. a*=R*+ 17— 2Rr cos (0 —a),
e —2Rrcos (0 —a) + R?*—a?=0............(1).
This is the required polar equation.

172. Particular cases of the general equation in polar coordinates. *

31) Let the initial line be taken to go through the centre C. Then
a=0, and the equation becomes

72— 2Ry cos8 0 + R?—a?=0.
(2) Let the pole O be taken on the circle, so that
R=0C=a.
The general equation then becomes
2\ 2ar 008 (6 - a) =0,
i.e r=2a 008 (6 - a).

(8) Let the pole be on the circle and also let the initial line pass
through the centre of the circle. In this case

a=0, and R=a. p
The general equation reduces then to the ,\
gimple form r=2a cos 6.
This is at once evident from the figure. o A
For, if 0CA be a diameter, we have
OP=04cos 4,
i.e r=2a cos 6.

178. The equation (1) of Art. 171 is a quadratic
equation which, for.any given value of 6, gives two
values of . These two values in the figure are OP and
0Q.

If these two values be called », and r,, we have, from
equation (1),

r7y=product of the roots=R?—a?
i.e. OP.0Q=R?-a’

The value of the rectangle OP.0Q is therefore the
same for all values of 4. It follows that if we drew any
other line through O to cut the circle in P, and @, we
should have OP. 0Q =O0P,. 0Q,.

This is Eue. 111. 36, Cor.




POLAR EQUATION TO THE TANGENT. 147

174. Find the equation to the chord joining the points on the circle
7=2a cos 0 whose vectorial angles are 6, and 05, and deduce the equation
to the tangent at the point 6;.

The equation to any straight line in polar coordinates is (Art. 88)

P=rco8(0—-a) ..cccevrririonrnnnnnnnns (1).

ifathis pass through the points (2a cos 8,, 6,) and (2a 0086,, 6,), we
ve

2a 008 6, cos (0, — a) =p=2a cos 6, 008 (0;—a)......... 2).
Hence 008 (26, — a) + 08 a =008 (26, — &) + 008 a,
i.e. 20, -a= - (26, - a),
ginee 6, and 6, are not, in general, equal.
Hence : a=0,+0,,

and then, from (2), p=2a cos 6, cos 6,.
On substitution in (1), the equation to the required chord is
7008 (6 — 6; — 63)=2a 008 6, 0B b, ............... (8)-

The equation to the tangent at the point 6, is found, as in
Art. 150, by putting 8,=6, in equation (8).

‘We thus obtain as the equation to the tangent
rcos (6 - 26,) =2a c08?6, .

As in the foregoing article it could be shewn that the equation to
the chord joining the points 8, and 6, on the circle r=2aco8 (0 - v) is
rcos[0 -0, - 0,+v]=2a cos (8; — ) cos (05— )
and hence that the equation to the tangent at the point 6, is

7 608 (0 — 20, +v) =2a cos? (6, — ).

EXAMPLES. XX,

1. Find the coordinates of the centre of the circle
r=A4 008 0+ Begin 0.

9. Find the polar equation of a circle, the initial line being a
tangent. What does it become if the origin be on the circumference?
8. Draw the loci
(1) r=a; (2) r=asin@; (3) r=acosd; (4) r=asech;
(6) r=aoco8(0-a); (6) r=asec(f-a).
4. Prove that the equations r=acos S&—a) and r=>bsin (6 -a)
represent two circles which cut at right angles.
5. Prove that the equation #3008 §—ar cos 20 - 243 cos =0
represents & straight line and a oircle.

102
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8. Find the polar equation to the circle described on the straight
line joiming the points (a, a) and (b, B) as diameter.

7. Prove that the equation to the circle deseribed on the straight
line joining the points (1, 60°) and (2, 30°) as diameter is

72— r [008 (0 — 60°) + 3 cos (0 — 30°)]+4/3=0.
8. Find the condition that the straight line

%:aoos 0+bsind

may touch the cirocle r=2c cos 4.

178. To find the general equation to a circle referred to
oblique axes which meet at an angle w.

Let C be the centre and & the radius of the circle. Let
the coordinates of C be (&, k) so
that if CM, drawn parallel to the Y
axis of y, meets OX in M, then

OM=h and MC =k.

Let P be any point on the
circle whose coordinates are « and
y. Draw PN, the ordinate of P, [;.
and CL pa.ra.llel to 0X to meet o M N X
PN in L.

Then CL=MN=0N-OM=xz-h,
and LP=NP—-NL=NP-MC=y-k.

Also 2CLP=:0NP=180°— . PNX=180°"-ow.

Hence, since CL*+ LP*—2CL.LPcos CLP=a’,
wehave (x—h)34 (y—k)2+2 (x—h) (y —k) cosw=al,
te. @ +y* + 2wy cos o — 2z (h+ kcos w) — 2y (k +h cos w)

+ A+ 12 + 2hk cos w=a?.

_ The required equation is therefore found.

176. As in Art. 142 it may be shewn that the
equation
2+ 2xycosw+ Y + 292+ 2fy +¢ =0

represents a circle and its radius and centre found.
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Bx. If the axes be inolined at 60°, prove that the equation
4oy +yt-4z -8y —-2=0 .........ccoe..... o
represents a circle and find its centre and radius.
If w be equal to 60°, 8o that cos w=}, the equation of Art. 175

e 242y +y -2 (2h+k) -y (3k + h) + B3+ K3+ hk=ad.
This equation agrees with (1) if
DT YN P R @),
BE+R=B....ccvvierinrnnirinnrininanns (3),
and h4+k*+hk-a2=-2............... veenneees(d)e

. Solving (2) and (3), we have k=1 and k=2. Equation (4) then
gives

ad=h34+k*+hk+2=9,
so that a=8.

The equation (1) therefore represents a circle whose centre is the
point (1, 2) and whose radius is 8, the axes being inclined at 60°.

EXAMPLES., XXI.
Find the inclinations of the axes so that the following equations
may represent circles, and in each case find the radius and centre ;
1. z‘-zy+y’—2gz—2fy=0.
2. 2%+./8zy+y?—4dz-6y+65=0.

3. The axes being inclined at an angle w, find the centre and
radius of the circle

22+ 2zy 008 w+y? - 292 - 2fy =0.
4. The axes being inclined at 45°, find the equation to the circle
whose centre is the point (2, 3) and whose radius is 4.
5. The axes being inclined at 60°, find the equation to the circle
whose oentre ig the point (- 3, —5) and whose radius is 6.

6. Prove. that ‘the equation to a circle whose radius is ¢ and
which touches the axes of coordinates, which are inclined at an angle
Wy 18

z’+%yoosu+y’-2a(z+y)ootg+a’oot’-;=0.

7. Prove that the straight line y=mz will touch the circle .
23+ 2zy co8 w+y2+ 29z +2fy +¢=0
it (g +fm)3=c (1+2m cos w+mT).
8. The axes being.inolinod at an angle v, find the eguaﬁon to the
circle whose diameter is the straight line joining the points
(=, ¥') and (=", y").
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Coordinates of a point on a circle expressed in
terms of one single variable.

177. If, in the figure of Art. 139, we put the angle
MOP equal to a, the coordinates of the point P are easily
seen to be a cos ¢ and a 8in a.

These equations clearly satisfy equation (1) of that
article.

The position of the point P is therefore known when
the value of a is given, and it may be, for brevity, called
“the point a.”

‘With the ordinary Cartesian coordinates we have to
give the values of #wo separate quantities ' and ¥’ (which
are however connected by the relation o’ =,/a®—y?) to
express the position of a point P on the circle. The
above substitution therefore often simplifies solutions of
problems.

178. To find the equation to the straight line joining
two points, a and B, on the circle &* + y* = al.
Let the points be P and @, and let ON be the perpen-

dicular from the origin on the straight line PQ ; then ON
bisects the angle POQ, and hence

L XON=}(¢XOP + . X0Q)=}(a +B).

Allo  ON=OP cos NOP=a cos “;B.

The equation to PQ is therefore (Art. 53),
e+ f a+f a—p

2 g AT
If we put 8=a we have, as the equation to the tangent

at the point a,

x cos + ysin

xcosa + ysina=a.

This may also be deduced from the equation of Art. 150
by putting &' =acose and ' =a sin a.

179. If the equation to the circle be in the more
general form
(z— R)* + (y — k)* = a’, (Art. 140),
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we may express the coordinates of P in the form
(h + acosa, k+ asina).
For these values satisfy the above equation.
Here a is the angle LCP [Fig. Art. 140].
The equation to the straight line joining the points a and
B can be easily shewn to be

(z—h)cosa;ﬁ+(y—lc)sina;ﬁ=aoosa;B,
and so the tangent at the point a is

(x—h)cosa+ (y—k)sina=a.

#180. Common tangents to two circles. If O,
and 0, be the centres of two circles whose radii are r, and
7y, and if one pair of common tangents meet 0,0, in T,
and the other pair meet it in 7', then, by similar triangles,
we have 0T, _ '3 = O—T— The points 7', and 77 therefore

T lol OiT 1
divide 0,0, in the ratio of the radii.

The coordinates of 7', having been found, the corre-
sponding tangents are straight lines passing through it,
such that the perpendiculars on them from O, are each
equal to 7. So for the other pair which pass through 7',

Bx. Find the four common tangents to the circles
2349%-222+4y+100=0, and z+y%+22z -4y -100=0.
The equations may be written
(z-11)2+(y +2)*=5% and (z+11)3+ (y - 2)3=15%
The ocentre of the first is the point (11, —2) and its radius is 5.
The centre of the second is the point (- 11, 2) and its radius is 15,

Then T, is the point dividing internally the line joining the centres
in the ratio 5 : 15 and hence (Art. 22) its coordinates are

15x11+8x(-11) and 15x(~-2)+5x2
16+56 156+6 ’

that is, T is the point (A2, -1).
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Similarly 7, is the point dividing this line externally in the ratio
5 : 15, and hence its coordinates are

15x11-5x(-11) 15x(=2)-5x2
—16-8 sd g §

that is, T is the point (22, —4).

Let the equation to either of the tangents passing through T, be

DR CL LT RO ).
Then the perpendicular from the point (11, —2) on it is equal to

+ 5, and hence
m(11-3) (=241 _ o
NT+ms
On solving, we have m= -3 or §.

The required tangents through T, are therefore
24x+ Ty =125, and 4z - 3y =26.
Similarly the equations to the tangents through T, are

y+4=m(z—22) ..ccevrrriiiiiiiiiinnnnns 2),
where w(11-99)-(-244) o
NI+m?
On solving, we have m=qgor —§.

On substitution in (2), the required equations are therefore
Tz — 24y =250 and 3z + 4y =50.
The four common tangents are therefore found.

181. We shall conclude this chapter with some mis-
cellaneous examples on loci.

Bx. 1. Find the locus of a point P which moves so that its distance
Jfrom a given point O is always in a given ratio (n : 1) to its distance
Jfrom another given point A.

Take O as origin and the direction of OA as the axis of z. Let
the distance O4 be a, so that A is the point (a, 0).

If (z, y) be the coordinates of any position of P we have

OP3=n3. AP,
i.e. 234+ 2 =nd[(z - a)?+y%], )
s.e. (z3+9?) (- 1) - 2aniz +n%a®=0.................. ().

Henoe, by Art. 148, the locus of P is a circle.

Let this circle meet the axis of z in the pointa C and D. Then OC
and OD are the roots of the equation obtained by putting y equal to
zero in (1).

na na
Hence oC= asl and OD=-m .
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‘We therefore have
a a
CA=n—+—1 and AD=;_—1.
Hen 0_0— O‘_D—.
08 ci=ap="™

The points C and D therefore divide the line 04 in the given ratio,
and the required circle is on CD as diameter.

Bx. 8. From any point on one given circle tangents are drawn to

amother given circle; prove that the locus of the middle point of the
chord of contact is a third circle,

Take the centre of the first circle as origin and let the axis of =
pass through the cenire of the second cirole. Their equations are

Bry=ad ... veerenen (1),
and (Z=e)34+Y2=b2 ..o @),
where a and b are the radii, and ¢ the distanoce between the centres, of
the circles. .

Any point on (1) i8 (a 608 6, a sin 6) where 0 is variable. Its chord
of contact with respect to (2) is
(@—-c)(acos0—c)+yagind=0b.................. (8).
The middle point of this chord of contact is the point where it is
met by the perpendicular from the centre, viz. the point (¢, 0).
The equation to this perpendicular is (Art. 70)
~(z—-c)asinf+(aco8f-c)y=0 ............... 4.
Any equation deduced from (8) and (4) is satisfied by the coordi-
nates of the point under consideration. If we eliminate 6 from them,
we shall have an equation always satisfied by the coordinates of the

point, whatever be the value of 6. The result will thus be the equation
{'o the required locus.

Bolving (3) and (4), we have

asm0=m.
= V=0

and acoso—c-y,_‘_(z_c)’,
b3 (z-¢)

so that acoBl=c+—5—1—-.
y+(z-¢

’ b
9 . g z-c °
a?=a?cos? 04 a?sin o_c’+ﬁcb’y,+(z_c),+y’+(z_c),.
The required locus is therefore

(a*— ) [y3+ (2 - ¢)?]=2cd? (z - c) + b*.
This is a circle and its centre and radius are easily found.
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Bx. 8. Find the locus of a point P which is such that its polar.with
respect to one circle touches a second circle.

Taking the notation of the last article, the equations to the two

circles are
Z34Y3=a® ..o 1),
and (T—e2+y3=b cerrrrrrrrirrienen, 2).
Let (h, k) be the coordinates of any position of P. Its polar with
respect to (1) is
Zh+yYk=a3 ...cccovtiriirrrnnnninaennenee 3)-
Also any tangent to (2) bas its equation of the form (Art. 179)
(z—¢)0080+yBINO=D ..cccevvnrrrnrnnnnne 4)-
If then (3) be a tangent to (2) it must be of the form (4).
cos § sin
Therefore - = To = c————w:: +b .
These equations give
cos 0 (a? - ch)=>bh, and sin @ (a? - ch)=bk.
Squaring and adding, we have
(@2 —ch)?=b2 (B2 + k) ..cocvvirnririiinnnnnns 6).

The locus of the point (, k) is therefore the curve
b2 (22+y?) = (a? - cx)?.
“ Aduur. The condition that (3) may touch (2) may be otherwice
ound.

For, as in Art. 153, the straight line (3) meets the circle (2) in tkp
points whose abscissm are given by the equation

k3 (z - c)3+ (a? - hz)2=0%%3,

i.e. 22 (h? + k?) — 3z (ck®+ a%h) + (K% + at — b%%?) =0.

The line (3) will therefore touch (2) if

(ck3+ a%h)2=(h%+ k?) (k%34 at - b2%9),

ie. if BB+ E) = (ch - a?)?,
which is equation (5). .

Bx. 4. O 1is a fized point and P any point on a given circle; OP
is joined and on it a point Q is taken so that OP.0Q=a constant

quantity k2; prove that the locus of Q is a circle which becomes a
straight line when O lies on the original circle. )
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Let O be taken as pole and the line through the centre C as the
initial line. Let OC=d, and let the

radius of the circle be a. R
The equation to the circle is then ]
a*=r3+d-2rdcosd, (Art.171), ° o d _C j
where OP=r and £ POC=4. U
Let OQ be p, so that, by the given

condition, we have rp=k? and hence r=!‘; .

Substituting this value in the equation to the circle, we have

3K, o p_ gt
a P,+d’ 2 , 008 0...c.c.uurerrnnanennnnnns ),

8o that the equation to the locus of Q is
p-g P oome=- K )
m d’-a’ ................... o

. Baut the equation to a cirele, whose radius is a’ and whose centre is
on the initial line at a distance d’, is

12-2rd'cosf=a®-d"...........ccccv.nnen. (8).

Comparing (1) and (2), we see that the required locus is a circle,
such that

kd Kt
d'=d,_a’ and a®-ad%= —a,—_?'.
Kt a2 ktat
I’______ - —— e
oo =g a[mmarl]=goap
The required locus is therefore a circle, of radius 7 whose
centre is on the same line as the original centre at a distanoed-,k—:d;,

from the fixed point.

‘When O lies on the original circle the distance d is equal to a, and
the equation (1) becomes k2=2dr cos 0, i.e., in Cartesian coordinates,
2
2.
(I)xbthis case the required locus is a siraight line perpendicular
to OC.

‘When a second curve is obtained from a given curve by the above
geometrical process, the second curve is said to be the inverse of the
first curve and the fixed point O is called the centre of inversion.

The inverse of a circle is therefore a circle or a straight line
according as the centre of inversion is not, or is, on the circumference
of the original circle.
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Bx. 8. PQ is a straight line drawn through O, one of the common
points of two circles, and meets them againin P and Q; find the locus ¢f
the point S which bisects the line PQ.

Take O as the origi.n, let the radii of the two eircles be R and R,
and let the lines joining their centres to O make angles a and o’ with
e.

the initial lin
The equations to the two circles are therefore, {Art. 172 (2)},
r=2Rco0s(0 - a), and r=2R’cos (0-a’).
Henece, if S be the middle point of PQ, we have
208=0P+0Q=23R cos (0 - a) + 2R’ cos (¢ — a').
The locus of the point S is therefore
r=Rcos (0 — a)+R’ cos (0 — ')
=(RcoBa+R’'coBa’)cos 0+ (Rsina+ R’'sina’)sin

© =R 008(0—0") ceieeinniriiieretieter e 1),
where 2R’ cos a”=R cos a+ R’ ¢os o,
and 2R" gina” =R sina+ R’sin a’.
" Henoe R"=% A/R3+ R?+2RR cos (a - a'),
»_Rsina+ R'sina’
and tand “Roosa+R'cosa’”

F'roam(‘il)g)l;hg1 locus ofOS i?l a eir:ll:a,thv;hoie ni:..eius is R”, which
passes e origin O and is su t the line joining O to its
centre is inclined. at an angle a” to the initial line, y

EXAMPLES. XXII

1. A point moves so that the sum of the squares of its distances
from uthr:l our sides of a square is constant; prove that it always lies
ona e.

2. A point moves so that the sum of the squares of the perpendi-
culars let fall from it on the sides of an equilateral triangle is constant;
prove that its locus is & circle. -

8. A point moves so that the sum of the squares of its distances
from the angular points of a triangle is constant; prove that its locus
is a circle.

4. Find the locus of a point which moves so that the square of
the tangent drawn from it to the circle 22+ y?*=a3 is equal to ¢ times
its distance from the straight line lz +my +n=0.

5. Find the locus of a point whose distance from a fixed point is
in a constant ratio to the tangent drawn from it to a given circle.
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6. Find thelocus of the vertex of a triangle, given (1) its base and
the sum of the squares of its sides, (2) its base and the sum of m times
the square of one side and n times the square of the other.

7. A point moves so that the sum of the squares of its distances
from n fixed points is given. Prove that its locus is a circle.

8. Whatever be the value of a, prove that the locus of the inter-
section of the straight lines

zcosa+ysina=a and zgina-ycosa=H
is a circle.

9. From a point P on a circle perpendiculars PM and PN are
drawn to two radii of the circle which are not at right angles; find
the loous of the middle point of MN.

10. Tangents are drawn to a circle from a point which always
lies on & given line; prove that the locus of the middle point of the
chord of contact is another circle.

11. Find the locus of the middle pointsbof chords of the circle
23+ y3=a? which pass through the fixed point (&, k).

12. Find the locus of the middle points of chords of the circle
23+ y23=a? which subtend a right angle at the point (c, 0).

13. Ois a fixed point and P any point on a fixed circle; on OP
is taken & point @ such that OQ is in & constant ratio to OP ; prove
that the locus of Q is a circle.

14, Ois a fixed point and P any point on a given straight line;
OP is Lmed and on it is taken & point @ such that OP.0Q=Fk*;
prove that the locus of @), i.e. the inverse of the given straight line
with respect to O, is a circle which passes through O,

15. One vertex of a triangle of given species is fixed, and another
moves along the circumference of a fixed circle ; prove that the locus
of the remaining vertex is a circle and find its radius.

16. Ois point in the plane of a circle, and OP, P, any ohord
of the circle wzmh passes through O and meets the circle in P,

P,. On this chord is taken a point Q such that OQ is equal to (1‘) the
snthmetlc, (2) the geometric, and (3) the harmonic mean between OP;
and OP,; in each case find the equation to the locus of Q.

17. Find the locus of the point of intersection of the tangent to
any circle and the perpendicular let fall on this tangent from a fixed
point on the circle.

18. A circle touches the axis of z and cuts off a eonstant length
21 from the axis of y ; prove that the equation of the locus of its oentre
is y® ~ 23=13 copec? w, the axes being inclined at an angle w.
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19. A straight line moves so that the product of the perpendi-
culars on it from two fixed points is constant. Prove that the locus
of the feet of the perpendiculars from each of these points upon the
gtraight line is a circle, the same for each.

20. O is a fixed point and AP and BQ are two fixed parallel
straight lines; BOA is perpendicular to both and POQ is & right
angle. Prove that the locus of the foot of the perpendicular drawn
from O upon PQ is the circle on AB as diameter.

21, Two rods, of lengths a and b, slide along the axes, which are
rectangular, in such a manner that their ends are always concyelic;
prove that the locus of the centre of the circle passing through these
ends is the curve 4 (22— y%) =a%- b3,

22, Shew that the locus of a point, which is such that the
tangents from it to two given concentric circles are inversely as the
radii, is & concentric cirele, the square of whose radius is equal to the
sum of the squares of the radii of the given circles.

23, Shew that if the length of the tangent from a point P to the
circle 22+ y2=a? be four times the length of the tangent from it to the
circle (z — a)?+y3=a?, then P lies on the circle

1623+ 15y® - 82az + a3=0.

Prove also that these three circles pass through two points and that
the distance between the centres of the first and third circles is
gixteen times the distance between the centres of the second and
third circles.

24, Find the locus of the foot of the perpendicular let fall from
the origin upon any chord of the circle «*+y3+2gz +2fy +¢=0 which
subtends a right angle at the origin,

Find also the locus of the middle points of these chords.

25. Through a fixed point O are drawn two straight lines OPQ
and ORS to meset the circle in P and @, and R and S, respectively.
Prove that the loous of the point of intersection of PS and QR, as also
that of the t]]:oint of intersection of PR and @S, is the polar of O with
respect to the circle.

26. 4, B, C,and D are four points in a straight line; prove that
the locus of & point P, such that the angles APB and CPD are equal,
is a cirele.

27. The polar of P with respect to the circle 23+ y3=a? touches

the circle (z—a)?+ (y — B)3=0?; prove that its locus is the curve given
by the equation (az + By — a%)3=01% (z2+y9).

28. A tangent is drawn to the circle (z—a)’-i—g’:b’and apem
dicalar tangent to the circle (z+a)*+y*=c3?; find the locus of thei
point of intersection, and prove that the bisector of the angle between
them always touches one or other of two fixed circles.
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29. In any circle prove that the perpendicular from any point of
it on the line joining the points of contact of two tangents is a mean
proportional between the perpendiculars from the point upon the two
tangents.

80. From any point on the circle
z2+y3+ 29z +2fy +¢=0
tangents are drawn to the circle
22+yI+ 29z + 3y +csinda+ (93 + %) oos?a=0;

prove that the angle between them is 2a.

31. The angular points of a triangle are the points

(acosa, asina), (2cosB, asinpB), and (acosy, asiny);
prove that the coordinates of the orthocentre of the triangle are
a(cosa+cos 8+008y) and a (sin a+8in 8+ 8iny).

Henoe prove that if 4, B, C, and D be four points on a circle the
orthocentres of the four triangles ABC, BCD, CDA, and DAB lie on
& circle.

82. A variable circle passes through the point of intersection O
of any two straight lines and cuts off from them portions OP and 0Q
such that m.OP+n.0Q is equal to unity; prove that this circle
always passes through a fixed point.

88. Find the length of the common chord of the circles, whose
equations are (z— a)’+y3=a? and 2?+ (y - b)?=>%, and prove that the
equation to the circle whose diameter is this common chord is

(0+5%) (2% +y%) =2ab (bz +ay).

84. Prove that the length of the common chord of the two circles
whose equations are

(z-a)+(y-b)I=c? and (z-0)%+(y-a)P=c?
is NET-2a- )
Henoe find the condition that the two circles may touch.
35. Find the length of the common chord of the circles
21 +y?— %az - day - 4a*=0 and 2+y?—Baz+4ay =0,

Find also the equations of the common tangents and shew that
the length of each is 4a.

36. Find the equations to the common tangents of the circles
(1) 2*+)*-2z-6y+9=0 and z2+y3+6z-2y+1=0,
(2) 2+y?=c? and (z-a)3+y3=0%



CHAPTER IX.

SYSTEMS OF CIRCLES.

[This chapter may be omitted by the student on a first
reading of the subject.]

182. Orthogonal Circles. Def. Two circles are
said to intersect orthogonally when

the tangents at their points of N
intersection are at right angles. 4 _7\a;
If the two circles intersect at 5 o)

1 2

P, the radii O,P and O,P, which

are perpendicular to the tangents -

at P, must also be at right angles.
Hence - 0,0=0,P*+0,P?,

.e. the square of the distance between the centres must be

equal to the sum of the squares of the radii.

Also the tangent from O, to the other circle is equal to
the radius a,, i.e. if two circles be orthogonal the length of
the tangent drawn from the centre of one circle to the
second circle is equal to the radius of the first.

Either of these two conditions will determine whether
the circles are orthogonal.

The centres of the circles
22 +y3+292+2fy +¢c=0 and 22+y2+2¢'z+ 2"y +¢'=0,

are the points (-g, —f) and (- y , —=f'); also the squares of their
radii are g2+f2—c and g2 +f"%~¢
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They therefore cut orthogonally if
(=g +)+(=f+fP=g*+f1-c+g 457 -¢,
i.e. if 290’ +2ff'=c+¢.

183. Radical Axis. Def. The radical axis of
two circles is the locus of a point which moves so that the
lengths of the tangents drawn from it to the two circles are
equal.

Let the equations to the circles be
P+y+292+2fy+e=0........... (1),
and P+ +202+2y+6=0 .ol 2),

and let (z,, &) be any point such that the tangents from it
to these circles are equal.

By Art. 168, we have

o'+ + 292 + Y+ e =@+ y' + 29m + Y + oy
ie 22, (9 — 1) + 25 (f /) + ¢ — 6, =0.

But this is the condition that the point (a,, ¥,) should
lie on the locus

22(9g—g)+ 2y (S-S)+ec—e=0........ 3).

This is therefore the equation to the radical axis, and it

is clearly a straight line.

It is easily seen that the radical axis is perpendicular
to the line joining the centres of the circles. For these
centres are the points (-g, —f) and (—g,, —f}). The
“m?” of the line joining them is therefore —

1=~

-9—-(-9)’
te. Lj—‘-
9—N
The “m” of the line (3) is — Z—%,

f-h
The product of these two “m’s” is — 1.

Hence, by Art. 69, the radical axis and the line joining
the centres are perpendicular,

L. 11
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184. A geometrical construction can be given
for the radical axis of two circles.

K)TL/\‘_"/T

Fig. 2.

If the circles intersect in real points, P and ¢, as in
Fig. 1, the radical axis is clearly the straight line PQ.
For if T be any point on PQ and TR and 7'S be the
tangents from it to the circles we have, by Euc. 1. 36,

TR*=TP.TQ="T8"
If they do not intersect in real points, as in the second

figure, let their radii be a, and a,, and let 7" be a point such
that the tangents TR and 7'S are equal in length.

Draw 70 perpendicula.r to 0,0,.

Since 'R3 = T82,
we have T0? - O,R*=T02 — 0,8,
e T0?+ 0,0°—a?=T0*+ 002 —
t.e. 0,0* - 00 1=a?—a,?
t.e. (0,0—- 00,) (010 + 00,) = a,> — ag,

e 0,0—-00,= =a constant quantity.

0 0s
Hence O is a fixed point, since it divides the fixed
straight line 0,0, into parts whose difference is constant.

Therefore, since 0,07 is a right angle, the locus of 7,
t.e. the radical axis, is a fixed straight line perpendicular to
the line joining the centres.
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185. If the equations to the circles in Art. 183 be
written in the form S=0 and 8’ =0, the equation (3) to
the radical axis may be written §—8 =0, and therefore
the radical axis passes through the common points, real or
imaginary, of the circles =0 and §'=0.

In the last article we saw that this was true geometri-
cally for the case in which the circles meet in real points.

When the circles do not geometrically intersect, as in
Fig. 2, we must then look upon the straight line 770 as

passing through the imaginary points of intersection of the
two circles.

186. The radical axes of three circles, taken in pairs,
meet in a point.

Let the equations to the three circles be

=20 i (1),

=0, 2),

and S'=0 i 3).
. The radical axis of the circles (1) and (2) is the straight

ine
S-8=0.ciiiiiin, (4)
The radical axis of (2) and (3) is the straight line
B e N (5).

If we add equation (5) to equation (4) we shall have the
equation of a straight line through their points of inter-
section.

Hence S—8"=0.ccienen. TIPS (6)
is a straight line through the intersection of (4) and (5).

But (6) is the radical axis of the circles (3) and (1).

Hence the three radical axes of the three circles, taken
in pairs, meet in a point.

This point is called the Radical Centre of the three
circles.

This may also be easily proved geometrically. For let
the three circles be called 4, B, and C, and let the radical
axis of 4 and B and that of B and C meet in a point 0.

To11-2
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By the definition of the radical axis, the tangent from O
to the circle 4 = the tangent from
O to the circle B, and the tangent
from O to the circle B =tangent
from it to the circle C.

Hence the tangent from O to
the circle A =the tangent from it
to the circle C, t.e. O is also a
point_on the radical axis of the
circles 4 and C.

187. If 8=0 and 8’ =0 be the equations of two circles,
the equation of amy circle through their potnis of inter-
section 18 S =\S'. Also the equation to any circle, such that
the radical axis of it and S=0 18 u=0, 18 S+ Au=0.

For wherever §=0 and §8'=0 are both satisfied the
equation §=AS’is clearly satisfied, so that §=AS’ is some
locus through the intersections of § =0 and §'=0.

Also in both § and §’ the coefficients of «* and y* are
equal and the coefficient of xy is zero. The same statement
is therefore true for the equation S=AS8’. Hence the
proposition.

Again, since % is only of the first degree, therefore in
8+Au the coefficients of #* and 3* are equal and the
coefficient of 2y is zero, so that S + Au =0 is clearly a circle.
Also it passes through the intersections of §=0 and »=0.

EXAMPLES. XXIII

Prove that the following pairs of circles interseot orthogonally :
1. 2%+y2-2z+c=0 and z8+y?+2by - c=0.
2. 2*+y?-2azx+3by+c=0 and z*+y?+2bz +2ay - c=0.

8. Find the equation to the circle which passes through the origin
and cuts orthogonally each of the circles P :

22+y?-62+8=0 and 23+y?-23z-2y="T.
Find the radical axis of the pairs of circles
4, #+y*=144 and 22+y*- 162+ 11y =0.
5. 2'+y'-8c-4y+6=0 and 82%+8y%-Tr 48y +11=0,
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8. 2*+y’-2y+6z-Ty+8=0 and 23+y?-=zy-4=0,
the axes being inclined at 130°,
Find the radical centre of the sets of circles
7. 23+y*+z+2y+8=0, 24+ y* + 22+ 4y +5=0,
and z3+y?-Tz -8y -9=0.

8. (z-2)%+(y-8)2=36, (z+8)+ (y +2)* =49,
and (z-4)+(y+5)2=64.

9. Prove that the square of the tangent that can be drawn from
any point on one circle to another circle is equal to twice the produot
of the perpendicular distance of the point from the radical axis of the
two circles, and the distance between their centres.

10. Prove that a common tangent to two circles is biseoted by the
radical axis,

11. Find the general equation of all circles any pair of which have
the same radical axis as the circles .

23+y’=4 and z¥+y?+2x+4y=6.

12. Find the equations to the straight lines joining the origin to
the points of intersection of

a%+y3-4x-2y=4 and z*+yI-2z -4y - 4=0.

13. The polars of a point P with respect to two fixed circles meet
in the point Q. Prove that the circle on PQ as diameter passes
through two fixed points, and outs both the given circles at right
angles.

14. Prove that the two circles, which pass through the two points

(0, a) and (0, — a) and fouch the straight line y =mzx + ¢, will cut ortho-
gonally if c2=a?(2+m3).

15. Find the locus of the centre of the circle which cuts two given
circles orthogonally.

16. If two circles cut orthogonally, prove that the polar of any
point P on the first circle with respect to the second passes through
the other end of the diameter of the first circle which goes through P.

Hence, (by considering the orthogonal circle of three circles as
the locus of a point such that its polars with respect to the circles
meet in a point) prove that the orthogonal circle of three circles,
given by the general equation is

z+g1, Y+, g+ fiyte
ztgy, Y+Sfa, g+ Sfyteg|=0.
T+ Y+Su gTHSyte
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188. Coaxal Circles. Def. A system of circles
is said to be coaxal when they have a common radical axis,
i.e. when the radical axis of each pair of circles of the
system is the same.

To find the equation of a system of coaxal circles.

Since, by Art. 183, the radical axis of any pair of the
circles is perpendicular to the line joining their centres, it
follows that the centres of all the circles of a coaxal system
must lie on a straight line which is perpendicular to the
radical axis.

Take the line of centres as the axis of x and the radical
axis as the axis of y (Figs. I. and IIL, Art. 190), so that O
is the origin.

The equation to any circle with its centre on the axis
of  is

P+ —22+¢=0..cccnininenn... ).

Any point on the radical axis is (0, ¥,).

The square on the tangent from it to the circle (1) is,
by Art. 168, »,*+c.

Since this quantity is to be the same for all circles of
the system it follows that ¢ is the same for all such circles ;
the different circles are therefore obtained by giving dif-
ferent values to g in the equation (1).

The intersections of (1) with the radical axis are then
obtained by putting « =0 in equation (1), and we have

y=+J-c.
If ¢ be negative, we have two real points of intersection
asin Fig. I. of Art. 190. In such cases the circles are said
to be of the Intersecting Species.

If ¢ be positive, we have two imaginary points of in-
tersection as in Fig. II.

189. Limiting points of a coaxal system.

The equation (1) of the previous article which gives any
circle of the system may be written in the form

(0-g)t + 4= ¢t — o= [JF =
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It therefore represents a circle whose centre is the point
(g, 0) and whose radius is ,/g*— c.

This radius vanishes, s.e. the circle becomes a point-
circle, when g*=c¢, i.c. when g=+ Jo.

Hence at the particular points (+ 4/¢, 0) we have point-
circles which belong to the system. These point-circles are
called the Limiting Points of the system.

If ¢ be negative, these points are imaginary.

But it was shown in the last article that when ¢ is

negative the circles intersect in real points as in Fig. I.,
Art. 190.

If ¢ be positive, the limiting points Z, and L, (Fig. IL.) are
real, and in this case the circles intersect in imaginary points.

The limiting points are therefore real or imaginary
according as the circles of the system intersect in imaginary
or real points.

190. Orthogonal circles of a coaxal system.

Let T be any point on the common radical axis
of a system of coaxal circles, and let TR be the tangent
from it to any circle of the system.

Then a circle, whose centre is 7' and whose radius is 7R,
will cut each circle of the coaxal system orthogonally.
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[For the radius 7'R of this circle is at right angles to
the radius O, R, and so for its intersection with any other
circle of the system.]

ul
Fig. IL

Hence the limiting points (being point-circles of the
system) are on this orthogonal circle.

The limiting points are therefore the intersections with
the line of centres of any circle whose centre is on the
common radical axis and whose radius is the tangent from
it to any of the circles of the system.

Since, in Fig. 1., the limiting points are imaginary these
orthogonal circles do not meet the line of centres in real
points.

In Fig. IL they pass through the limiting points Z,
and Lgo

These orthogonal circles (since they all pass through two
points, real or imaginary) are therefore a coaxal system.

Also if the original circles, as in Fig. I., intersect in
real points, the orthogonal circles intersect in imaginary
points; in Fig. IL. the original circles intersect in imaginary
points, and the orthogonal circles in real points.

We therefore have the following theorem :

A set of coaxal circles can be cut orthogonally by another
set of coaxal circles, the centres of each set lying on the
radical axis of the other set; also one set is of the limiting-
point species and the other set of the other species.
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191. Without reference to the limiting points of the original
system, it may be easily found whether or not the orthogonal circles
meet the original line of centres.

For the circle, whose centre is T and whose radius is TR, meets
or does not meet the line 0,0, according as TR? is > or < T03,

i.e. according as TO2-O0,R? is Z TO?,
i.e. acoording as T0%+00,3- O,R*is Z T03,
i.e. according as 00, is Z O,R,

i.e. according as the radical axis is without, or within, each of the
circles of the original system.

192. In the next article the above results will be
proved analytically.

To find the equation to any circle which cuts two given
circles orthogonally.

Take the radical axis of the two circles as the axis of y,
so that their equations may be written in the form

D+ —2x+e=0......ccieei.n. (1),
and P+t -2gx+c=0..ll Ll (2),
the quantity ¢ being the same for each.
Let the equation to any circle which cuts them or-

thogonally be
(=AY +(y-BY=F......... 3).
The equation (1) can be written in the form
(=gl +=[JF = (4).

The circles (3) and (4) cut orthogonally if the square of
the distance between their centres is equal to the sum of
the squares of their radii,

i.e. if . (A-gp+B=R+[JF ],
t.e. if A+ B -24g=R'—c¢ ............... (5).

Similarly, (3) will cut (2) orthogonally if
A%+ B* - 249, =R —c............... (6).

Subtracting (6) from (5), we have 4 (g—g,)=0.
Hence 4 =0, and R*= B%+e¢.
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Substituting these values in (3), the equation to the

required orthogonal circle is
2+ —2By-c=0.......... e (7),

where B.is any quantity whatever.

‘Whatever be the value of B the equation (7) represents
a circle whose centre is on the axis of ¥ and which passes
through the points (+./¢, 0).

But the latter points are the limiting points of the
coaxal system to which the two circles belong. [Art. 189.]

Hence any pair of circles belonging to a coaxal system
is cut at right angles by any circle of another coaxal
system ; also the centres of the circles of the latter system
lie on the common radical axis of the original system, and
all the circles of the latter system pass through the limiting
points (real or imaginary) of the first system.

Also the centre of the circle (7) is the point (0, B) and
its radius is /B +c.

The square of the tangent drawn from (0, B) to the
circle (1) = B* + ¢ (by Art. 168).

Hence the radius of any circle of the second system is
equal to the length of the tangent drawn from its centre to
any circle of the first system.

193. The equation to the system of circles which cut
a given coaxal system orthogonally may also be obtained
by using the result of Art. 182.

For any circle of the coaxal system is, by Art. 188,
given by

B+y'—2z+ec=0........ooooii. (1),

where ¢ is the same for all circles.

Any point on the radical axis is (0, y'). .

The square on the tangent drawn from it to (1) is
therefore y” + c.

The equation to any circle cutting (1) orthogonally is

therefore
24 (y—y Y=y 4o,
e 2+y'— 2y’ —c=0.
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‘Whatever be the value of g this circle passes through

the points (+4/c, 0), i.e. through the limiting points of the
system of circles given by (1).

194. We can now deduce an easy construction for the
circle that cuts any three circles orthogonally.

Consider the three circles in the figure of Art. 186.

By Art. 192 any circle cutting 4 and B orthogonally
has its centre on their common radical axis, t.e. on the
straight line 0D.

Similarly any circle cutting B and C orthogonally has
its centre on the radical axis OF.

Any circle cutting all three circles orthogonally must
therefore have its centre at the intersection of 0D and OX,
.e. at the radical centre 0. Also its radius must be the

length of the tangent drawn from the radical centre to
any one of the three circles.

Bx. Find the equation to the circle which cuts orthogonally each
of the three circles

B+y24+22+1Ty+ 4=0.ccccvveveirnrnnnnns 1),
2+y?+Tz+ 6y+11=0.....
2 4+yl- z+22Y+ 8=0...ccocurrrrnennnnn. (3)-
The radical axis of (1) and (2) is .
bz - 11y +7=0.
The radical axis of (2) and (8) is
8z-16y +8=0.

These two straight lines meet in the point (3, 2) which is therefore
the radical centre.

The square of the length of the tangent from the point (3, ) to
each of the given circles =57.

The required equation is therefore (z - 8)3+ (y - 2)2=57,
i.e. 23+y3-6z-4y - 44=0.

198. Bx. Find the locus of a point which moves so that the length
of the tangent drawn from it to one given circle is \ times the length of
the tangent from it to another given circle.

Asin Art. 188 take as axes of z and y the line joining the centres

of the two circles and the radical axis, The equations to the two
circles are therefore

P TP P ,
and 224+y?-2g.8+¢=0...cooonriirnnrnnnnnn (2).
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Let (h, k) be a point such that the length of the tangent from it to
(1) is always \ times the length of the tangent from it to (2).

Then 4k -2,k +c=N[h*+ k3 - 29,k +c].

Hence (h, k) always lies on the circle

a_
z’+y'-2zg~H+c=0 ..................... @).

This cirele is clearly a circle of the coaxal system to which (1) and
(2) belong.

Again, the centre of (1) is the point (g, 0), the centre of (2) is

(93, 0), whilst the centre of (3) is (‘{;",_‘fl,o).

Henoe, if these three centres be called O, , O,, and O;, we have

3_ A2
010:=g’:u—_1gl ‘91=m(92 =)

1
and O,O,:Q-A’_—lg! “9= g (92— 92)»

80 that 0,04: 0,0;:: N : 1,
The required locus is therefore a circle coaxal with the two given

circles and whose centre divides externally, in the ratio A3: 1, the line
joining the centres. of the two given circles.

EXAMPLES. XXIV.

1. Prove that a common tangent to two circles of a coaxal
system subtends a right angle at either limiting point of the system.

2. Prove that t:::ci)olu of a limiting point of a coaxal system
:vhith respect to any circle of the system is the same for all circles of
e system. :

8. Prove that the polars of any point with respect to a gystem of
coaxal circles all pass through a fixed point, and that the two points
are equidistant from the radical axis and subtend a right angle at a
limiting point of the system. If the first point be one limiting point
of the system prove that the second point is the other limiting point.

4, A fixed circle is cut by a series of circles all of which pass
through two given points; prove that the straight line joining the
intersections of the fixed circle with any circle of the system always
passes through a fixed point.

5. Prove that tangents drawn from any point of a fixed circle of
& coaxal system to two other fixed circles of the system are in a
constant ratio,
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6. Prove that a system of coaxal circles inverts with respect to
either limiting point into a system of oonoentrio circles and find the
position of the common centre.

7. A straight line is drawn touching one of a system of coaxal
circles in P and cutting another in Q and R. Bhew that PQ and PR

subtend equal or supplementary es at one of the limiting points
of the system. ‘

8. Find the locus of the point of contaot of parallel tangents
which are drawn to each of a series of coaxal circles.

9. Prove that the circle of similitude of the two circles
23+y%-2kz +3=0 and 2*+y*-2k'z+3=0

(i.e. the locus of the points at which the two circles subtend the same
angle) is the coaxal circle s
+

2 =
2 +y 2k+k,z+a 0.

- 10. From the preceding question shew that the centres of simili-
tude (i.e. the points in which the common tangents to two circles
meet the line of centres) divide the line joining the centres internally
and externally in the ratio of the radii.

11. I z+ya/—l=tan(u+v./=1), where z, y, u, and v are all
real, prove that the curves u=constant give a family of coaxal circles

passing through the points (0, +1), and that the curves v=constant
give a system of circles cutti.ng’ the first system orthogonally.

12. Find the equation to the circle which cuts orthogonally each
of the circles

2 +y3+ 29z + ¢ =0, 23+ y3+29'z+c=0,
and 2+y3+2hz + 2ky +a=0.

18. Find the equation to the circle cutting orthogonally the
three ciroles :

2*+yd=a?, (z-c)*+y?=a?, and 23+(y-Dd)'=al

14. Find the equation to the circle cutting orthogonally the
three circles

2343 -22+8y-T7=0, 22+ y3+ b6z -5y +9=0,
and 23+y3+ Tz -9y +29=0.
15. Shew that the equation to the circle cutting orthogonally the
circles
(@-a)+(y-bp=b3, (z-bp+(y - a)p=a?,
and (z—a—-b-c)P+yd=ab+ct,

is 23+y3- 2z (a+b) -y (a+Db) +a*+3ab+ b2=0,



CONIC SECTIONS.

CHAPTER X
THE PARABOLA.

196. Conic 8ection. Def. The locus of a point
P, which moves so that its distance from a fixed point is
always in a constant ratio to its perpendicular distance
from a fixed straight line, is called a Conic Section.

The fixed point is called the Focus and is usually
denoted by S.

The constant ratio is called the Eccentricity and is
denoted by e.

The fixed straight line is called the Directrix.

The straight line passing through the Focus and per-
pendicular to the Directrix is called the Axis.

‘When the eccentricity e is equal to unity, the Conic
Section is called a Parabola.

‘When e is less than unity, it is called an Ellipse.

‘When ¢ is greater than unity, it is called a Hyper=
bola.

[The name Conic Section is derived from the fact that
these curves were first obtained by cutting a cone ih
various ways.]
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19%7. 7o find the equation to a Parabola.

Let S be the fixed point and ZJM the directrix. We
require therefore the locus
of a point P which moves s E
so that its distance from §
is always equal to PM, its M P
perpendicular distance from
ZM. L
Draw SZ perpendicular /1IN
to the directrix and bisect Z| A\ S
SZ in the point 4 ; produce :
ZA to X. L
_ The point 4 is clearly a
int on the curve and is F
called the Vertex of the
Parabola.

Take 4 as origin, AX as the axis of x, and 47,
perpendicular to it, as the axis of y.

Let the distance ZA, or A4S, be called a, and let P be
any point on the curve whose coordinates are = and y.

Join SP, and draw PN and PM perpendicular respec-
tively to the axis and directrix.

‘We have then SPi=PM?,
.e. (x—ap+y*=ZN*=(a + x)’,

This being the relation which exists between the co-
ordinates of any point P on the parabola is, by Art. 42, the
equation to the parabola.

Cor. The equation (1) is equivalent to the geometrical
proposition
PN2®=4A4S5.4N.

198. The equation of the preceding article is the
simplest possible equation to the parabola. Throughout
this chapter this standard form of the equation is assumed
unless the contrary is stated.
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If instead of AX and AY we take the axis and the
directrix ZM as the axes of coordinates, the equa.tlon
would be

(2 — 20 +y* =2,
t.e. © y=da(x—a)..coriiirninnnnne. (1).

Similarly, if the axis SX and a perpendicular line SZ
be taken as the axes of coordinates, the equation is

2+ 3 =(z + 2a),
e Y=4a (+a) ccoceviiiiinnnnnn. (2).

These two equations may be deduced from the equation
of the previous article by transforming the origin, firstly to
the point (- a, 0) and secondly to the point (a, 0).

199. The equation to the parabola referred to any focus and
directrix may be easlly obtained. Thus the equation to the parabola,
whose focus is the point (3, 8) and whose ix is the straight
line z - 4y +8=0, is .

(e-2p+(y-8p= {5,

JE 4
i.e. 17[8%+y?—4z—6y+18]= {22+ 16y%+9 — 8zy + 6z — 24y},
i.c. 1628 + y3+ 8zy — T4z - T8y +312=0.
200. 7o trace the curve
Y=4ax ... ..coovreiiiniannnnn, (1)

If = be negative, the corresponding values of y are

ry (since the square root of a negative quantity is

unreal) ; hence there is no part of the curve to the left of
the point 4.

If y be zero, so also is x, so that the axis of = meets
the curve at the point 4 only.

If = be zero, so also is y, so that the axis of y meets
the curve at the point 4 only.

For every positive value of  we see from (1), by taking
the square root, that y has two equal and opposite values.

Hence corresponding to any point P on the curve there
is another point P on the other side of the axis which is
obtained by producing PN to P’ sp that PN and NP are
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equal in magnitude. The line PP is called a double
ordinate,

As z increases in magnitude, so do the corresponding
values of y; finally, when x becomes infinitely great, y
becomes infinitely great also.

By taking a large number of values of = and the
corresponding values of y it will be found that the curve is
a8 in the figure of Art. 197.

The two branches never meet but are of infinite length.

201. The quantity y* — 4ax’ s negative, zero, or positive
according as the point (x', i) 18 within, upon, or without the
parabola.

Let @ be the point («, »') and let it be within the
curve, i.e. be between the curve and the axis 4X. Draw
the ordinate QN and let it meet the curve in P.

Then (by Art. 197), PN?*=4a.x.
Hence 7, t.e. QN? is <PN? and hence is < 4ax’.
<. y*—4ad is negative.
Similarly, if @ be without the curve, then y?, i.e. QN?,
is > PN3, and hence is > 4ac’.
Hence the proposition.
202. Latus Rectum. Def. The latus rectum of

any conic is the double ordinate LSL' drawn through the
focus S.

In the case of the parabola we have SI = distance of L
from the directrix =82 = 2a.

Hence the latus rectum = 4a.

‘When the latus rectum is given it follows that the
equation to the parabola is completely known in its
standard form, and the size and shape of the curve
determined.

The quantity 4a is also often called the principal
parameter of the curve.

Focal Distance of any point. The focal distance
of any point P is the distance SP.

This focal distance =PM =ZN=ZA + AN =a + .
L. 12
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Bx. Find the vertex, axis, focus, and latus rectum of the parabola
4y?+122— 20y +67=0.

The equation can be written
y’—ﬁy: "83_‘3"9
ie. (Y- 4= -85 +3p= —3(z+}).

Transform this equation to the point (- 3§, §) and it becomes
y?= — 3z, which represents a parabola, whose axis is the axis of z
and whose concavity is turned towards the negative end of this axis.
Also its latus rectum is 8,

Referred to the original axes the vertex is the point (- §, §), the
axis is y=4§, and the foous is the point (- § - §, §), t.e. (- %, §).
EXAMPLES. XXV.

Find the equation to the parabola with
1. focus (3, —4) and directrix 6z — Ty +5=0.

2. focus (a, b) and directrix §+ Y_1.

b
Find the vertex, axis, latus rectum, and focus of the parabolas
8. y’=4z+4y. 4, :v’+2y=8:c—7_.
5. 2?-2az+2ay=0. 6. y*=4y-4a.

7. Draw the curves
(1) y?=-4az, (2) 2*=4day, and (3) a?= —4ay.
8. Find the value of p when the parabola y?=4pz goes through
the point (i) (3, — 2), and (ii) (9, - 12).
9. For what point of the parabola y®=18z is the ordinate equal
to three times the abscissa ?

10. Prove that the equation to the parabola, whose vertex and focus
are on the axis of = at distances a and a' from the origin respectively,
is y?=4(a’-a)(z- a).

11. In the parabola y3=6z, find (1) the equation to the chord
through the vertex and the negative end of the latus rectum, and
(2) the equation to any chord through the point on the curve whose
abscissa is 24.

12. Prove that the equation y2+24xz+ 2Py +C=0 represents &
parabola, whose axis is parallel to the axis of z, and find its vertex and
the equation to its latus rectum. '

18. Prove that the locus of the middle points of all chords of
the bola y3=4ax which are drawn through the vertex is the
parabola y*=2az.
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14. Prove that the locus of the centre of a circle, which intercepts
a chord of given length 2a on the axis of z and passes through a given
point on the axis of y distant b from the origin, is the curve
28 - yb+ bi=ad
Trace this parabola.
15. PQ is a double ordinate of & parabola. Find the locus of its
points of trisection.

16. Prove that the locus of a point, which moves so that its
distance from a fixed line is equal to the length of the tangent drawn
from it to a givén circle, is a parabola. Find the position of the
focus and directtiz.

17. 1If a circle be drawn so as always to touch a given straight
line and also a given circle, prove that the locus of its centre is
a parabola. :

18. The vertex 4 of a parabola is joined to any point P on the
curve and PQ is drawn at right angles to 4P to meet the axis in Q.
Prove that the projection of PQ on the axis is always equal to the
latus rectum.

19. If on a given base triangles be described such that the sum of v
the tangents of the base angles is constant, prove that the locus of
the vertices is a parabola.

20. A double ordinate of the curve y?=4pz is of length 8p ; prove
that the lines from the vertex to its two ends are at right angles.

21. Two parabolas have a common axis and concavities in oppo-
site directions; if any line parallel to the common axis meet the
parabolas in P and P’, prove that the locus of the middle point of PP
is another parabola, provided that the latera recta of the given para-
bolas are unequal.

22. A parabola is drawn to pass through 4 and B, the ends of
a diameter of a given circle of radius a, and to have as directrix a
tangent to a concentric circle of radius b; the axes being 4B and
a perpendicular diax;:eter, prove that the locus of the focus of the

. 22 ¥ )
parabola is b?+b’—a’—L

203. 7o ﬁnd the points of intersection of any straight

lime with the parabola
P =4aL ceerniniin 1.
The equation to any straight line is
Y=ME+Covvnnnnnnnnnnenininnn, (2).

The coordinates of the points common to the straight
line and the parabola satisfy both equations (1) and (2),
and are therefore found by solving them.

12—2
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Substituting the value of y from (2) in (1), we have
(mx + c)? = dax,

e mix? + 22 (mc—2a)+ =0 ............. (3).

This is a quadratic equation for = and therefore has two
roots, real, coincident, or imaginary.

The straight line therefore meets the parabola in two
points, real, coincident, or imaginary.

The roots of (3) are real or imaginary according as

{2 (mec — 2a)}* — 4m*c?

is positive or negative, i.e. according as —amc +a? is
positive or negative, s.e. according as mc is < 4a.

204. To find the length of the chord intercepted by the parabola on
the straight line
Y=ME+HC iviieeninnnninnninneninnans (1)

If (z,, yg:n 3, Y5) be the common points of intersection, then,
a8 in Art. 154, ve, from equation (3) of the last article,

(2~ zg)¥= (2 + 25) ~ 42,74
_4(mc-2a)* 4c?_ 16a(a—mc)
FTTmt TmT T me
and Y1~ Ys=m (2, - z5).
Henoe the required length = A/(y; - ¥,)*+ (2, - 2,)°

=JI+m (zl—z,)=,,i‘s N1+md Ja(a—me).

. 208. To find the equation to the tangent at any point
(=, ¥) of the parabola y* = 4azx.

The definition of the tangent is given in Art. 149.
. Let P be the point (2, ') and @ a point (", ¥/') on the
parabola.

The equation to the line PQ is

y—y —y—%%(m—w') ................. (1)
Since P and @ both lie on the curve, we have
y:=dax' ......ccivvieiinnnn.n. 2),

and yYi=dax' ......cccoiiiiinnnnn.. (3)-
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Hence, by subtraction, we have
Y -y*=da (" -7),

i.e. @' =Y +¥Y) = ba (2" - &),
and hence "/,, _y: = ’4a ) o
o'—x y'+y

Substituting this value in equation (1), we have, as
the equation to any secant PQ

yy!/+(ww')

e Yy +y")=4ax+y'y’ +y?=4aa’
=dax+ Yy’ oo (4).

To obtain the equation of the tangent at (', ¥) we take
@ indefinitely close to P, and hence, in the limit, put 3" =y/'.

The equation (4) then becomes
2yy’ = y* + dax = dax + 4ax’,
t.e. Yy’ =2a (x+X).
Cor. It will be noted that the equation to the tangent

is obtained from the equation to the curve by the rule of
Art. 162 »

Exs. The equation to the tangent at the point (2, - 4) of the
parabola y?=8z is
y(-4)=4(z+2),
i.e. - z+y+23=0.
The equation to the tangent at the point ( 2a ) of the para.bols

y’=4aa:m
~2—‘-'—2a z+ 1)
y'm" ﬂ.ﬁ ]
i =mz+2
3.e. y—m+m.

206. 7o find the condition that the straight line
YSMEHC iererenirininenannnns (1)
may touch the parabola yP=4ax ...........cccoveveenenn (2).

The abscissw of the points in which the straight line (1)
meets the curve (2) are as in Art. 203, given by the equation

B + 22 (mo— 2a) + =0 ............ ).
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The line (1) will touch (2) if it meet it in two points
which are indefinitely close to one another, 4.e. in two
points which ultimately coincide.

The roots of equation (3) must therefore be equal.

The condition for this is

4 (me — 2a)? = 4m??,

z.e. a?—ame=0,
‘a
so that c=—.
m

Substituting this value of ¢ in (1), we have as the
equation to a tangent,

a
y-—m+Eu

In this equation .m is the tangent of the angle which
the tangent makes with the axis of .
The foregoing proposition may also be obtained from the equation
of Art. 205.
For equation (4) of that article may be written

2a 2ax’
e e al e Y 1).
y=y v (0]

In this equation put %‘,’;m, i.e. y’=%‘:,
L]
and hence =L =2 d &L‘,c'-— at

L= y m’
The equation (1) then becomes y=mz + '% .
. . . 2a
Algo it is the tangent at the point (¢, y'), i.e. (’-;-‘:, , ;) .

207. Equation to the normal at (¢, y'). The required
normal is the straight line which passes through the point
(#, ¥') and is perpendicular to the tangent, i.e. to the
straight line

2a ,
=—(x+ax).
y=y @+a)
Its equation is therefore

y—y =m'(z—2),
2a

where m' x 7 ==1, s¢e'm=— (Art. 69.)

Y
2“’
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and the equation to the normal is
==Y x_x
y-y = 9a E=x).n (1).

208. To express the equation of the normal in the form
' y = mx — 2am — am®,
In equation (1) of the last article put

-y
2a

/2
Hence - a:’=‘%¢-l=am’.

=m, t.e. ¥ =—2am,

The normal is therefore
Y + 2am =m (x — am?),

.6 y =mx-2am — am3,
and it is a normal at the point (am?, — 2am) of the curve.

In this equation m is the tangent of the angle which
."the mormal makes with the axis. It must be carefully
distinguished from the m of Art. 206 which is the tangent
of the angle which the fangent makes with the axis. The
“m” of this article is — 1 divided by the “m” of Art. 206.

209. Subtangent and Subnormal. Def. If
the tangent and normal at any point P of a conic section
meet the axis in 7' and @ respectively and PN be the
ordinate at P, then N7 is called the Subtangent and NG the
Subnormal of P.

To find the length of the subtangent and subnormal.

If P be the point («/, y') the equation to I'P is, by
Art. 205,

vy =2a(x+2)...... (1).

To obtain the length of 47, we
have to find the point where this
straight line meets the axis of «,
t.e. we put y=01in (1) and we
have

Hence AT =AN.
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[The negative sign in equation (2) shews that I’ and
N always lie on opposite sides of the vertex 4.]

Hence the subtangent N7'= 24N = twice the abscissa
of the point P,

Since TP@ is a right-angled triangle, we have (Euc. v1. 8)
PN*=TN.NG. '

Hence the subnormal ¥¢
_PN* PN
~ TN 24N

The subnormal is therefore constant for all points on

the parabola and is equal to the semi-latus rectum.

= 2a.

210. Bx. 1. If a chord which is normal to the parabola at one
end subtend a right angle at the vertex, prove that it is inclined at an
angle tan~1,/2 to the azis.

The equation to any chord which is normal is
y=mz — am - am3,
i.e. mzx -y =2am+ am?,
The parabola is yi=4daz,
The straight lines joining the origin to the intersections of these
two are therefore given by the equation
y? (2am+ am?) — 4az (mz - y) =0.
- If these be at right angles, then
2am + am? — 4am=0,
i.e. m=%,/2,
Bx. 3. From the point where any normal to the parabola y*=4azx

meets the axis is drawn a line perpendicular to this normal; prove that
this line always touches an equal parabola.

The equation of any normal to the parabola is
. y=mz — 2am — am?.
This meets the axis in the point (2a + am3, 0).

The equation to the straight line through this point perpendicular
to the normal is

y=m (z-2a—-am’),
where mm= -1.
The equation is therefore

y=m (x—2a— —‘3,) .
m

i.e. y=m,(z—2a)-"—1.
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This straight line, as in Art, 206, always touches the equal parabola
y’_ -4a (z 2a),

whose vertex is the point (2a, 0) and whose concavity is towards the
negative end of the axis of z.

EXAMPLES. XXVI

‘Write down the equations to the tangent and normal
1. at the point (4, 6) of the parabola y3=9z,
2. at the point of the parabola y?=6z whose ordinate is 12,
3. at the ends of the latus restum of the parabola y3=12z,
4, at the ends of the latus rectum of the parabola y?=4a (z - a).

5. Find the equation to that tangent to the parabola y2=Tz
which is parallel to the siraight line 4y—z+8=0. Find also its
pomt ot contact.

t to the parabola y3=4az makes an angle of 60° with
the sns ﬁn its point of contact.

7. A tangent to the parabola y?=8z makes an angle of 45° with
the straight line y=38z+6. Fmd its equation and its point of
contact.

8. Find the points of the parabola y?=4az at which (i) the
tangent, and (ii) the normal is inclined at 80° to the axis.

9. Find the equntlon to the tangents to the parabola y?=92z which

goes through the point (4, 10).

10. zI;rove that the straight line z+y=1 touches the parabola
y =T -2

11. Prove that the straight line y=mz+c touches the psrabola

y*=4a (z+a) if c=m¢+2 .

12. Prove that the straight line &+ my + n=0 touches the parabola
y3=4daz if In=am?.

18. For what point of the parabola y3=4az is (1) the normal equal
to twice the subtangent, (2) the normal equal to the difference between
the subtangent and the subnormal ?

Find the equations to the common tangents of

14. the parabolas y3=4az and 23=4by,

15. the circle 22 +y2=4ax and the parabola y*=4az

16. Two equal parabolas have the same vertex and their axes are

at right angles; prove that the common tangent touches each at the
end of a latus rectum.
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17. Prove that two tangents to the parabolas y*=4a (x+a) and
y3=4a’ (z +a’), which are at right angles to one another, meet on the
straight line z +a +a'=0.

Shew also that this straight line is the common chord of the two
parabolas.

18. PN is an ordinate of the parabola; a straight line is drawn
parallel to the axis to bisect NP and meets the curve in Q; prove
that NQ meets the tangent at the vertex in a point 7' such that
AT =43NP, :

19. Prove that the chord of the parabola y?=4az, whose equation
i33 -z ,/2+4a,/2=0, is a normal to the curve and that its length is
6.4/3a.

20. If perpendiculars be drawn on any tangent to a parabola from
two fixed points on the axis, which are equidistant from the focus,
prove that the difference of their squares is constant.

21. . If P, Q, and R be three points on a parabola whose ordinates
are in geometrical progression, prove that the tangents at P and R
meet on the ordinate of Q.

22. Tangents are drawn to a parabola at points whose abscisse
are in the ratio 4 : 1; prove that they intersect on the curve

y*=(ut+uHaz.
23. If the tangents at the points (2, y’) and (2", y”) meet at the
pﬁ(:int (z,, v,) and the normals at the same points in (z,, y,), prove
t

Loyt I+ 4
O 5=YY and =¥,
(@) my=ta4 XYY AV
- 4a
and hence that .
(8) xy=2a+ %‘— -2 and Yg= —xﬁ/l.

L I+ ”
snd y=-yy L8,

24, From the preceding question prove that, if tangents be drawn
to the parabola y®=4az from any point on the parabola y*=a (z+b),
then the normals at the points of contact meet on a fixed straight
line.

25. Find the lengths of the normals drawn from the point on the
axis of the parabola y?=8ax whose distance from the focus is 8a.

26. Prove that the locus of the middle point of the portion of a
normal intersected between the curve and the axis is a parabola whose
vertex i8 the focus and whose latus rectum is one quarter of that of
the original parabola,

27. Prove that the distance between a tangent to the parabola and
the parallel normal is a cosec 6 sec? 8, where 6 is the angle that either
makes with the axis,
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28. PNP is a double ordinate of the parabola; prove that the
Iocus of the point of intersection of the normal at P and the diameter
through P’ is the equal parabola y3=4a (z - 4a).

29. The normal at any point P meets the axis in G and the
tangent at the vertex in G'; if 4 be the vertex and the rectangle
AGQG’ be completed, prove that the equation to the locus of Q is

23=2az?+ayd.
80. Two equal parabolas have the same focus and their axes are
at right angles; a normal to one is perpendicular to & normal to the

other; prove that the locus of the point of intersection of these
normals is another parabola.

81. If a normal to a parabola make an angle ¢ with the axis,
shew that it will cut the curve again at an angle tan—! (} tan ¢).

82. Prove that the two parabolas y2=4az and y?*=4¢(z - b) cannot
have a common normal, other than the axis, unless ;f—c>2.
33. If a?>8b% prove that a point can be found such that the two

ta’.ngents from it to the parabola y2=4ax are normals to the parabola
z3=4by.

84. Prove that three tangents to a parabola, which are such that
the tangents of their inclinations to the axis are in & given harmonical
progresgion, form a triangle whose area is constant.

85. Prove that the parabolas y?=4az and z3=4by cut one another

at an angle tan™! —ﬂ .
2 (at + bY)
86. Prove that two parabolas, having the same foous and their axes
in opposite directions, cut at right angles.
87. Shew that the two parabolas
23+4a(y-20-a)=0 and y*=4b (z—2a+Dd)

intersect at right angles at a common end of the latus rectum
of each.

88. A parabola is drawn touching the axis of z at the origin and
having its vertex at a given distance k from this axis. Prove that the
axis of the parabola is a tangent to the parabola z?= -8k (y — 2k).

211. Some properties of the Parabola.

(a) If the tangent and normal at any point P of the
parabola meet the axis in T and G respectively, then

ST=38G=S8P,
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and the tangent at P 18 equally inclined to the axis and the
Jocal distance of P.

M B,

Pl
T2z BB N G X
M P

Let P be the point («, ¥).

Draw PM perpendicular to the directrix.

By Art. 209, we have AT'=AN.

“IS=TA+AS=AN+ZA=ZN=MP =8P,
and hence ' ¢t STP= . SPT.

By the same article, NG =24S8=28.

. 8¢=8N +NG@=2Z8 + SN=MP=SP.

(8) If the tangent at P meet the directriz in K then
KSP i3 a right angle.

For L SPT=( PTS=. KPM.

Hence the two triangles KPS and KPM have the two
sides K P, P§ and the angle KPS equal respectively to the
two sides XP, PM and the angle XPM.,

Hence ¢ KSP=: KMP=a right angle.

Also ¢ SKP=( MKP. '

(v) ZTangents at the extremities of any focal chord snier-
sect at right angles in the directrix.

For, if PS be produced to meet the curve in 7, then,

since ¢ P'SK is a right angle, the tangent at P meets the
directrix in A,
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Also, by (B), ¢t MKP = SKP,
and, similarly, Lt M'KP = SKP.

Hence .
< PKP' =%+ SKM +} « SKM’ = a right angle.

(). If SY be perpendicular to the tangent at P, then Y
Lies on the tangent at the vertex and SY*= AS . SP.

For the equation to any tangent is

a
y=m+7—n tevsescence-sonnsans (l).

The equation to the perpendicular to this line passing
through the focus is

The lines (1) and (2) meet where

@ 1 1 a
me+ —=——(x—a)=——x+—,
m . m m- m
t.e. where z=0.

Hence Y lies on the tangent at the vertex.

Also, by Eue. v1. 8, Cor.,
SY?*=54.8T=A48.SP.

212. To prove that through any given point (z,, y,)
there pass, in general, two tangents to the parabola.

The equation to any tangent is (by Art. 206)

Y=ME+ 2 e (1)
If this pass through the fixed point (x,, ,), we have
a
v y1="‘wl+;‘a ‘
i.e mie —my, +a=0............e.onn(2).

For any given values of x, and y, this equation is in
general a quadratic equation and gives two values of m
(real or imaginary).

Corresponding to each value of m we have, by substi-
tuting in (1), a different tangent.
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The roots of (2) are real and different if y,* — 4ax, be
positive, 4.e., by Art. 201, if the point (x,, ¥,) lie without
the curve.

They are equal, .e. the two tangents coalesce into one
tangent, if ,* — 4ax, be zero, 4.e. if the point (x;, 3,) lie on
the curve.

The two roots are imaginary if y,® —4ax, be negative,
i.e. if the point (x,, 3,) lie within the curve.

213. FEgquation to the chord of contact of tangents
drawn from a point (x,, ¥,).
The equation to the tangent at any point @, whose
coordinates are x’ and y/, is
vy =2a (x + ). ,
Also the tangent at the point R, whose coordinates are
«” and y”, is
vy =2a (x +2").
If these tangents meet at the point 7', whose coordi-
nates are x, and y,, we have

Yy =20 (@ + &) oo, 1)

and vy =20 (@, +&") oo (2)-
The equation to QR is then

yY:=28 (X4X)... .ooeeennene. 3).

For, since (1) is true, the point («, %) lies on (3).

Also, since (2) is true, the point («”, ") lies on (3).

Hence (3) must be the equation to the straight line
joining («, ') to the point (", "), i.e. it must be the
equation to Q& the chord of contact of tangents from the
point (x,, ¥,).

214. The polar of any point with respect to a para-
bola is defined as in Art. 162.

To find the equation of the polar of the point (x,, y,)
with respect to the parabola y* = 4ax.

Let @ and R be the points in which any chord drawn

through the point P, whose coordinates are (z,, v,), meets
the parabola.
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Let the tangents at @ and R meet in the point whose
coordinates are (h, k).

T(hk)

‘We require the locus of (%, k).

Since QR is the chord of contact of tangents from (h, k)
its equation (Art. 213) is

ky =2a(x + k).
Since this straight line passes through the point (z;, y,)
we have
kyy=2a (@ +h)eeeeeennnnnnnnnn.. (1).

Since the relation (1) is true, it follows that the point
(%, k) always lies on the straight line

YV:=28 (X4+X) .ccocovnnnnnnnnn, 2).
Hence (2) is the equation to the polar of (z;, g).

Cor. The equation to the polar of the focus, viz. the point (a, 0),
is 0=z +a, 8o that the polar of the focus is the directrix.

215. When the point (x,, ,) lies without the parabola
the equation to its polar is the same as the equation to the
chord of contact of tangents drawn from (x,, ¥,).

‘When (z,, 3,) is on the parabola the polar is the same
as the tangent at the point.

As in Art. 164 the polar of (x,, ¥,) might have been
defined as the chord of contact of the tangents (real or
imaginary) that can be drawn from it to the parabola.

216. Geometrical construction for the polar of a point
(xls :'/1)-
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Let 7" be the point (x,, ¥,), so that its polar is

Through 7' draw a straight line parallel to the axis; its
equation is therefore
Y=Y eernrenrnannnns (2).
Let this straight line meet the polar T
in V and the curve in P.
The coordinates of ¥, which is the 9
intersection of (1) and (2), are therefore
w_
2% and ¥ ......... (3).
Also P is the point on the curve
whose ordinate is y,, and whose coordi- Fig. 1
nates are therefore "
w’

Ta and .

abscissa of 7'+ abscissa of V'

3 , there-

Since abscissa of P=
fore, by Art. 22, Cor., P is the
middle point of 7'V.

Also the tangent at P is

2!
yh=2a (w + ‘Z—;) ,
which is parallel to (1).
Hence the polar of T’ is parallel

to the tangent at P. Tig. <.

To draw the polar of 7' we therefore draw a line through
T, parallel to the axis, to meet the curve in P and produce
it to ¥ so that 7P =PV ; a line through ¥ parallel to the
tangent at P is then the polar required.

217. If the polar of a point P passes through the point T, then
the polar of T goes through P. (Fig. Art. 214).
Let P be the point (z,, ,) and T' the point (k, %).
The polar of P is yy, =2a (z +=,).
Binoéd it passes through T, we have
Y2k =2 (T4 B) everrrrerereeeererrennenen (1)
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The polar of T is yk=2a (x+ h).

dBinoe (1) is true, this equation is satisfied by the coordinates z,
and y,.

Hence the proposition.

Cor. The point of intersection, 7', of the polars of two points,
P and Q, is the pole of the line PQ.

218. To find the pole of a given straight line with respect to the
parabola.
Let the given straight line be
Az + By +C=0.
_ If its pole be the point (z,, ), it must be the same straight
e as .
yy,=2a (z+ ),
i.e. 2az - yy, + 2az, =0,
Since these straight lines are the same, we have

. C
i.e. :r,l=z and Y=———.

219. 7o find the equation to the pair of tangents that
can be drawn to the parabola from the point (x,, y,).

Let (h, k) be any point on either of the tangents drawn
from (x,, ). The equation to the line joining (z,, y,) to
(h, k) is

k-
Y=, @ m)
_k“?ll hy, - ka,
L Ty s
If this be a tangent it must be of the form

a
y=ma:+;b,

so that Zc_%:m and o~k _ a
h-x h—x, m
Hence, by multiplication,
k—y, by, — kb,
h—x, h—x
.e. a (b — o) = (k-1vy,) (hy, — k).

a= Py
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The locus of the point (k, k) (i.e. the pair of tangents
required) is therefore
a(@—o) =y —%) (@—yz) oo @)
It will be seen that this equation is the same as

(v* — da2) (v, — 4am) = {yy, — 2a (z + =)}

220. To prove that the middle points of a system of
parallel chords of a parabola all lie on a straight line which
8 parallel to the axis. _

Since the chords are all parallel, they all make the same
angle with the axis of . Let
the tangent of this angle be m.

The equation to QR, any
one of these chords, is there-
fore

Yy=mr+c...... 1),
where ¢ is different for the
several chords, but m is the
same,

This straight line meets the parabola y*= 4ax in points
whose ordinates are given by

"‘y’=4a(y'—c):

i.e. y’..._ +_=O

Let the roots of this equation, i.e. the ordinates of @
and R, be 3 and y”, and let the coordinates of ¥, the
middle point of QR, be (&, k).

Then, by Art. 22,

from equation (2).
The coordinates of ¥ therefore satisfy the equation
_2a
Y=m’

8o that the locus of 7 is a straight line parallel to the axis
of the curve,
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The straight line y= ?n_a meets the curve in a point P,

whose ordinate is g,,i: and whose abscissa is therefore :T"
The tangent at this point is, by Art. 205,

a
y=mz+_,

and is therefore parallel to each of the given chords.

Hence the locus of the middle points of a system of
parallel chords of a parabola is a straight line which is
parallel to the axis and meets the curve at a point the
tangent at which is parallel to the given system.

221. To find the equation to the chord of the parabola which is
bisected at any point (h, k).

By the last article the required chord is llel to the tangent at
the point P where a line through (A, k) el to the axis meets the
curve.

Also, by Art. 216, the polar of (h, k) is parallel to the tangent at
this same point P,

The required chord is therefore parallel to the polar yk=2a (z +h).

Hence, since it goes through (A, ), its equation is

k(y - k)=2a (z-h) (Art. 67).

222. Diameter. Def. The locus of the middle points
of a system of parallel chords of a parabola is called a
diameter and the chords are called its double ordinates.

Thus, in the figure of Art. 220, PV is a diameter and
QR and all the parallel chords are ordinates to this
diameter.

The proposition of that article may therefore be.stated
as follows.

Any diameter of a parabola ts parallel to the*axis and
the tangent at the point where it meets the curve is parallel
to it8 ordinates.

223. The tangents at the ends of any chord meet on
the diameter which bisects the chord.

Let the equation of Q& (Fig., Art. 220) be
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and let the tangents at @ and R meet at the point 7'
=5 )-
Then QR is the chord of contact of tangents drawn
from 7, and hence its equation is
vy, =2a (z + z,) (Art. 213).
Comparing this with equation (1), we have
2a 2a
"y—l=m» so that h=
and therefore 7 lies on the straight line

Y=m

But this straight line was proved, in Art. 220, to be
the diameter PV which bisects the chord.

224. To find the equation to a parabola, the axes
being any diameter and the tangent to the parabola at the
point where this diameter meets the curve.

Let PVX be the diameter and PY the tangent at P
meeting the axis in 7'

Take any point @ on the curve,
and draw @M perpendicular to the
axis meeting the diameter PV in L.

Let PV be 2 and V@ be y.

Draw PN perpendicular to the
axis of the curve, and let

0=:.YPX=.PTM.
Then

448. AN = PN*=NT?tan*9=4AN?. tan? 4.
S AN =AS. cot? 0 = a cot? 6,
and PN = J448. AN = 2a cot: 6.

Now QM?*=4AS . AM=4a.AM .. ......... (1).
Also

QM=NP+LQ=2acotf + VQsin 0 = 2a cot 6 +y sin 6,
and AM=AN+PV + VL=acot*d+x+ycosd.
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Substituting these values in (1), we have
(2a cot 8 + y sin 0)* = 4a (a cot? 6 + = + y cos ),

we. y*sin? 0 = 4ax.
The required equation is therefore
Y=4px .oviiiniiininnn (2),
where

p=8i:,o=a(l +cot?0) =a + AN =SP (by Art. 202).

The equation to the parabola referred to the above axes
is therefore of the same form as its equation referred to the
rectangular axes of Art. 197.

The equation (2) states that
QVi=48P.PV.

225. The quantity 4p is called the parameter of the
diameter PV. It is equal in length to the chord which is
parallel to PY and passes through the focus.

For if ¢' V'R’ be the chord, parallel to PY and passing
through the focus and meeting PV in V', we have

PV’ =8T=8P=p,
so that QVi=4p. PV’ =4p*,
and hence QR =2Q'V' =4p.
226. Just as in Art. 205 it could now be shown that
the tangent at any point (2, ¥) of the above curve is
vy =2p(x+ ).
Similarly for the equation to the polar of any point.

EXAMPLES. XXVII.
1. Prove that the length of the chord joining the points of
contact of tangents drawn from the point (z,, y,) is
Ji!1’+4“’~/!l1"4¢3;,
a

2. Prove that the area of the triangle formed by the tangents
from the point (z,, y;) and the chord of contact is (y,*- 4a:cl)’+2a.
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8. If a perpendioular be let fall from any point P upon its polar
})rove that the distance of the foot of this perpendicular from the
locus i8 equal to the distance of the point P from the directrix.

4, What is the equation to the chord of the parabola y3=8z
which is bisected at the point (2, —3)?

5. The general equation to a system of parallel chords in the
parabola y?=3iz is 4r—y+k=0.

‘What is the equation to the corresponding diameter ?

6. P, Q, and R are three points on & parabola and the chord PQ
cuts the diameter through R in ¥, Ordinates PM and QN are drawn
to this diameter. Prove that RM, RN=RV3,

7. Two equal parabolas with axes in opposite directions touch a$
a point O. From a point P on one of them are drawn tangents PQ
and PQ to the other., Prove that QQ’ will touch the first parabola in
P’ where PP is parallel to the common tangent at O,

Coordinates of any point on the parabola ex-
pressed in terms of one variable.

227%. It is often convenient to express the coordinates
of any point on the curve in terms of one variable.
It is clear that the values
a 2a
=w YTa
always satisfy the equation to the curve.
Hence, for all values of m, the point

a 2a
(o )

lies on the curve. By Art. 206, this m is equal to the
tangent of the angle which the tangent at the point makes
with the axis.

The equation to the tangent at this point is
_ a
y=mx + ;l ’
and the normal is, by Art. 207, found to be

9 a
my +x= G+H,.
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228. The coordinates of the point could also be ex-
pressed in terms of the m of the normal at the point; in
this case its coordinates are am® and — 2am.

The equation of the tangent at the point (am®, — 2am)

is, by Art. 205,
my +x+am?*=0,
and the equation to the normal is
Y =mx — 2am — am’®.

229. The simplest substitution (avoiding both nega-

tive signs and fractions) is
x =at? and y=2at.
These values satisfy the equation y* = 4a.

The equations to the tangent and normal at the point
(at?, 2at) are, by Arts. 205 and 207,

ty=x + at?
and Y + te = 2at + af’.
The equation to the straight line joining
(at?, 2at,) and (aty?, 2at,)
is easily found to be
Y (¢ + t;) = 22 + 2at,t,.
The tangents at the points
(at’, 2at,) and (at’, 2at;)
are by =z + at’,
and ty =x+at’
The point of intersection of these two tangents is clearly
{atitsy a(t+1)}. v

The point whose coordinates are (af, 2af) may, for
brevity, be called the point ¢:z.”

In the following articles we shall prove some important
properties of the parabola making use of the above substi-
tution.
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280. If the tangents at P and Q meet in T, prove that
(1) TP and TQ subtend equal angles at the focus S,
(2) 8T?=8P.8Q,

and (8) the triangles SPT and STQ are similar.
P be the point (at,?, 2at,), and Q be the
int (a ’ 2at,), 80 th&t (Art. 229) T is the point

atts, @ ‘1 +14 }
1) The equation to SP is y= af‘:t‘
X

i.e (63 -1)y - 2tz + 2at, =0.
The perpendicular, TU, from T on this
straight line
_a(t-1)(t+1) -2, . atlt2+2a’t1 a(‘l’ = 4%) + (4 — L)
NICES VT t’+1
=a(ty—ty).
Similarly TU’ has the same numerical value.
The angles PST and QST are therefore equal.
(2) By Art. 202 we have SP=a (1+¢3) and SQ=a(1+42).

. (x - a),

Also ST?=(at,t, — a)?+a3 (t,+1t)?
=a? [t + 6 + 6.2 + 1] =a? (1 +1,%) (1 +2,%).
Hence ST?=SP.SQ.
(8) Since 55 ST _5Q and the angles T'SP and T'SQ areequal, the

SPT ST
triangles SPT and ST'Q are similar, so that

£8QT= £ 8TP and £S8STQ= tSPT.

281. The area of the triangle formed by three -points on a
parabola 48 twice the area of the triangle formed by the tangents at
these points.

Let the three points on the parabola be
(aty?, 2aty), (ats?, 2at;), and (aty?, 2aty).
The area of the triangle formed by these points, by Art. 25,
—i [aty? (2aty - 2aty) + aty? (2aty - 2at) + aty? (2at, - 2aty)]
—a? (ty—tg) (t3—ty) (61— ty).

The mterseotlons of the tangents a.t these points are (Art. 229)
the points

{atts, a(ta+1t5)}, {atshy, a(ts+t)}, and {atyty, a(t;+8,)}.
The area of the triangle formed by these three points
=} {atyty (aty — aty) +atyt) (at) — aty) +atyty (aty—at,)}
=}a? (- 1g) (t3- 1) (4, - &)

The first of these areas is double the second.
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283. The circle circumscribing the triangle formed by any three
tangents to a parabola passes through the focus.

Let P, , and R be the points at which the tangents are drawn
and let their coordinates be

_ (at, 2at), (at}, 2an), and (aty?, 2aty).
As in Art, 229, the tangents at @ and R intersect in the point
{atsty, a(t+2)}
Similarly, the other pairs of tangents meet at the points
{atsty, a(t+4)} and {atity, a (4, +1,)}.
Let the equation to the circle be
24+ y3+292+2fy+¢=0....ccc0vvvveierennnnnn. 1).
Since it passes through the above three points, we have
adt 2,3+ a? (ty+ t5)% + Qgatyty + 2fa (ty+ty) +¢=0......... 2),
a%ty?t 3+ a? (ty+ 1))+ Bgatyt, +2fa (ty+ ) +c=0......... (8),
and a%t 33+ a? (t) + t,)?+ 2gat,ty+ 3fa (t, + 1) + ¢=O0......... (4).
Subtracting (8) from (2) and dividing by a (¢, - t,), we have
a {ts (h+8) + 0+ +24} + 294+ 3f=0.
Similarly, from (3) and (4), we have
a{ty? (ta+4)+ty+t5+24} + 29t +3f=0.
From these two equations we have
2= —a (1 +tty+tst + bty) and 2f= —a[t, +ly+t;— Gitghy)
Substituting these values in (2), we obtain
c=a? (toty+ toty + ity).
The equation to the circle is therefore
2yt -az (L+ Gty + bt + hitg) —ay (G + 4+ 4~ bitghy)
+3 (bt + tyty + 419) =0,
which clearly goes through the focus (a, 0).

288. If O be any point on the axis and POP’ be any chord
passing through O, and if PM and P’M’ be the ordinates of P and P,
prove that AM . AM'=A40% and PM.PM'= -4a.40.

Let O be the point (h, 0), and let P and P’ be the points

(at)?, 2at,) and (at;?, 2at,).

The equation to PP’ is, by Art. 229,

(ty+4) y - 20=2at,t,.
If this pass through the point (%, 0), we have
'2h=2atlt31
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h2
Hence AM . AM'=at,?. at?=a?. ai:h’:AO’,
and PM.PM’=2at1.2a.t,.=4a’(—£)=—4a.40.
Cor. If O be the focus, A0 =a, and we have
Lty=—1,i.e tg= —%1.

The points (at,3, 2at,) and (tl’ , %a) are therefore at the ends
of a focal chord. ! !

284. To prove that the orthocentre of any triangle formed by
three tangents to a parabola lies on the directriz.

Let the equations to the three tangents be

y="‘1‘”+"% .............................. (1),
y=myz+ - @
mgz g e y
a
and = o e 3).
y=ma+ o ®

to b'£he point of intersection of (2) and (3) is found, by solving them,

o ()t

The eg:ﬁon to the straight line through this point perpendicular

to (1) is (Art. 69)
v-a(ked) == i[o- 2]
my  my m ’
ie. y+Z=a[rtely @ .
m my Mg My

Similarly, the equation to the straight line through the intersection
of (3) and (1) perpendicular to (2) is

y+i=a(l+l+L) .................. ),
My My My Mymgmy

and the equation {o the straight line through the interseotion of (1
and (2) perpendicular to (3) is e )

z 1 1 a )
F—=a —F+ —F+ ——— ) cciiiiinnniiinnnn 6).
T “(ml iy * g @
The point which is common to the straight lines (4), (5), and (6),
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i.e. the orthocentre of the triangle, is easily seen to be the point
whose coordinates are

(1 1,1, 1 )
z=-a, y=a St
" g g ¥ gy

and this point lies on the directrix.

EXAMPLES. XXVIIL

1. If w be the angle which a focal chord of a parabola makes with
the axis, prove that the length of the chord is 4a cosec? w and that the
perpendicular on it from the vertex is a sin w,

2. A point on a parabola, the foot of the perpendicular from it
upon the directrix, and the focus are the vertices of an equilateral
mgla. Prove that the focal distance of the point is equal to the

8. Prove that the semi-latus-rectum is 8 harmonic mean between
the segments of any focal chord.

4, If T be any point on the tangent at any point P of a parabols,
and if TL be perpendicular to the focal radius SP and TN be perpen-
dicular to the direotrix, prove that SL=TN.

Hence obtain a geometrical oonstruction for the pair of tangents
drawn to the parabola from any point 7.

5. Prove that on the axis of any parabola there is a certain point
K which hattho property that, if a chordPQof the parabola be drawn
through it, then 1 1

7 Rl e
is the same for all positions of the chord.

6. The normal at the point (atl' 2at,) meets the parabola again
in the point (aty?, 2at,) ; prove thai

2
=g

7. A chord is a normal to a parabola and is inclined at an angle
0 to the axis; prove that the area of the triangle formed by it and
thetangentaahtaextremtiuud;a’seo‘&oouc‘&

8. If PQ be a normal chord of the la and if S be the foous,
prove that the locus of the centroid of the triangle SPQ is the curve
86ay? (3z — 5a) — 81y¢=1284q¢.
9. Prove that the length of the intercept on the normal at the
point (at?, 2at) made by the circle which is described on the focal
distanoe of the given point as diameter is a \/1+ .
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10. Prove that the area of the triangle formed by the normals to
the parabola at the points (at,3, 2at,), (at,? 2at,) and (aty?, 2at,) is

2 (-t (1) (-t (- 4

11. Prove that the normal chord at the point whose ordinate
is equal to its abscissa subtends a right angle at the focus.

12, A chord of a parabola passes through a point on the axis
(outside the parabola) whose distance from the vertex is half the
latus rectum ; prove that the normals at its extremities meet on the
ourve.

13. The normal at a point P of a parabola meets the curve
again in Q, and T is the pole of PQ; shew that T lies on the diameter
passing through the other end of the focal chord passing through P,
and that PT is bisected by the directrix.

14. If from the vertex of a parabola a pair of chords be drawn at
right angles to one another and with these chords as adjacent sides a
rectangle be made, prove that the locus of the further angle of the
rectangle is the parabola

y*=4a (z - 8a).

15. A series of chords is drawn so that their projections on a
straight line which is inclined at an angle a to the axis are all of
constant length ¢ ; prove that the loous of their middle point is the

ourve
(2 - 4ax) (y cos a +2asin a)*+ac?=0.

16. Prove that the locus of the poles of chords which subtend a

right angle at a fixed point (k, k) is
az? — hy*+ (422 + 2ah) 2 — 2aky +a (h3+ k%) =0.

17. Prove that the locus of the middle points of all tangents

drawn from points on the directrix to the parabola is
y3(2z +a)=a (8z+a)?.
18. Prove that the orthocentres of the triangles formed by three

tangents and the corresponding three normals to a parabola are
equidistant from the axis.

19. T is the pole of the chord PQ; prove that the perpendiculars
from P, T, and Q upon any tangent to the parabols are in geometrical
progression,

20. If v, and 7, be the lengths of radii vectores of the parabola
&I;i:h are drawn at right angles to one another from the vertex, prove

rl‘j r,* =16a? (r,’ + r,‘).

21. A parabola touches the sides of a triangle ABC in the points
D, E, and F ively ; if DE and DF out the diameter through the
point 4 in b and ¢ respectively, prove that Bb and Cc are parallel.
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929. Prove that all circles described on focal radii as diameters
touch the directrix of the ourve, and that all circles on focal radii as
diameters touch the tangent at the vertex.

928. A circle is described on a focal chord as diameter; if m be the
tangent of the inclination of the chord to the axis, prove that the
equation to the circle is . "

3 2\ _ %y _ 3 —
x3+y ﬁaz(1+m, ™ 8a2=0.

24, LOL’ and MOM are two chords of a parabola passing through
a point O on its axis. Prove that the radical axis of the circles

described on LL’ and MM’ as diameters passes through the vertex of
the parabola.

95. A circle and a parabola intersect in four points; shew that the
algebraic sum of the ordinates of the four points is zero.
Shew also that the line joining one pair of these four points and
the line joining the other pair are equally inclined to the axis.

26. Circles are drawn through the vertex of the parabola to cut
the parabola orthogonally at the other point of intersection. Prove
that the locus of the centres of the circles is the surve

23 (242 + 2% - 12az) =az (8z - 4a)3.

27. Prove that the equation to the circle passing through the
points (at;?, 2at;) and (ats?, 2at;) and the intersection of the tan-
gents to the parabola at these points is

224y - az[(t+ )+ 2] - ay (4 +1)) (1- tytg) +a%t1t, (2~ 9) =0.

28. TP and TQ are tangents to the parabola and the normals at P
and Q meet at a point R on the curve; prove that the centre of the
cirele circumseribing the triangle T'PQ lies on the parabola

l=a(z-a).

29. Through the vertex 4 of the parabola y*=4az two chords AP
and 4Q are drawn, and the circles on AP and 4Q as diameters
intersect in R. Prove tha, if 6,, 6;, and ¢ be the angles made with
the axis by the tangents at P and Q and by 4R, then

oot 6, + 00t 0, + 2 tan ¢ =0.

80. A parabola is drawn such that each vertex of a given triangle
is the pole of the opposite side ; shew that the focus of the parabola
lies on the nine-point circle of the triangle, and that the orthocentre of
:lh: triangle formed by joining the middle points of the sides lies on

directrix.



CHAPTER XI
THE PARABOLA (continued).

[On a first reading of this Chapter, the student may, with
advantage, omit from Art. 239 to the end.]

Some examples of Loci connected with the
Parabola.

238. Bx. 1. Find the locus of the intersection of tamgents to the
parabola y?=4azx, the angle between them being always a given angle a.

The straight line y=mz+%is always a tangent to the parabola.
If it pass through the point T (k, k) we

have
m3h-mk+a=0............ (1).

If m, and m, be the roots of this equation
we lm;:l (by A':c"ta‘2 2)

a
and MyMhy = s (8),
and the equations to TP and TQ are then

a a
=mz+— and y= —.
y=my ~ y m,.c+m’

Hence, by Art. 66, we have

tana ="M _ /(m+my)? - dm,m,
1+ m;m, 1+ mm,
¥ 4a
B h P 4an
a  a+h
l+i

» by (2) and (8).
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-, k*-4ah=(a+ h)*tanta.
Henoe the coordinates of the point T always satisfy the equation
y? - daz=(a+z)*tana. ,
‘We shall find in a later chapter that this curve is a hyperbola.

As a particular case let the tangents intersect at right angles, so
that mm,= - 1.

From (3) we then have A= — a, 80 that in this case the point T' lies
on the siraight line = - a, which is the direotrix.

Hence the locus of the point of intersection of tangents, which cut
at right angles, is the directrix.
Bx. 2. Prove that the locus of the poles of chords which are normal
to the parabola y*=4az is the curve
y2 (2 +2a) + 4a®=0.
Let PQ be a chord which is normal at P. Its equation is then
y=mr—2am—am?........c..o.cccoereuenre. 1).

Let the tangents at P and @ intersect in T, whose coordinates are
h and k, so that we require the locus of T

8inoe PQ is the polar of the point (h, k) its equation is
Ye=2a(T+h)...cccccouviriinnnrierernnnnn (2).
Now the equations (1) and (2) represent the same straight line, so
that they must be equivalent. Henoce
m=QTa, and -Mm—am’:z%h.

Eliminating m, i.e. substituting the value of m from the first of
these equations in the second, we have

k Bk’
i.e. k3 (h+ 2a) + 4a3=0,
The locus of the point T is therefore
y? (2 +2a) +4a%=0.
Bx. 8. Find the locus of the middle points of chords of a parabola

which subtend a right angle at the vertez, and prove that these chords all
pass through a fixed point on the azis of the curve.
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Pirst Method. Let PQ be any such chord, and let its equation be

The lines joining the vertex with the
points of intersection of this straight line vy
with the parabola

yi=daz............... 2),
are given by the equation
yic=4az (y -mz). (Art. 122)
These straight lines are at right angles if
c+4am=0. (Art. 111)

Substituting this value of ¢ in (1), the

equation to PQ is

Y=m (T -4a)....cccoeoevreirnrrnniinennnns (3).

This straight line cuts the axis of z at a constant distance 4a from
the vertex, i.e. 44'=4a.

If the middle point of PQ be (k, k) we have, by Art. 220,

If between (4) and (5) we eliminate m, we have
k=22 (- 4a),

ie ¥3=2a (h - 4a),
so that (4, k) always lies on the parabola
y2=2a(z - 4a).
This is a parabola one half the size of the original, and whose
vertex is at the point 4’ through which all the chords pass.
Second Method. Let P be the point (at,2, 2at,) and Q be the point
(ats?, 2at,).
The tangents of the inclinations of 4P and 4Q to the axis are
2 2
— and —.

4 Y
Since 4P and AQ are at right angles, therefore

i.e. Bla= —eerereireererrene et enenas (©)-
As in Art. 229 the equation to PQ is

(+t) Y=22+2aty cecveernreennnne .
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This meets the axis of z at a distance —atyt,, i.c., by (6), 4a, from
the origin.
Also, (h, k) being the middle point of PQ, we have
2h=a (t,}+1,3),

and 2k=2a (t, +1,).
Henoe 12~ 2ah=a? (t, +1)2 - ¥ (64 57)
=2a%t,= — 8a?,
so that the locus of (h, k) is, as before, the parabola
y1=2a(z - 4a).

Third Method. The equation to the chord which is biseoted at
the point (k, k) is, by Art, 221,

k(y - k)=2a(z - h),
ie ky - 202=k%— 2ah........oeoeeeoerrrerenn. ®).

Ag in Art. 122 the equation to the straight lines joining its points
of interseotion with the parabola to the vertex is

(k2 - 3ah) y*= daz (ky - 2az).
These lines are at right angles if
(K? - 2ah) +8a3=0.
Henoe the locus as before.
Also the equation (8) becomes
ky — 2az= - 8a3,
~ This straight line always goes through the point (4a, 0).

EXAMPLES. XXIX,

!'rom an external point P tangents are drawn to the parabola; find
':al tﬂ:n to themt;; :i P when these tangents make angles 6, and
axis, su
tan 6, +1tan 6, is constant (=b).
2_ tan 6, tan 4, is constant (=c).
cot 0, + cot 0, is constant (=d).
0, + 0, is constant (=2a).
tan? 9, + tan? 4, is constant (=)).
cos 0, cos 4, is constant (=u).

L. 14

oo @
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7. Two tangents to a parabola meet at an angle of 45°; prove that
the locus of their point of intersection is the curve

y?-daz=(z+a)’

If they meet at an angle of 60°, prove that the locus is

y* - 82%~ 10az - 3a*=0.

8. A pair of tangents are drawn which are equally inclined to a
straight line whose inclination to the axis is a ; prove that the locus
of their point of intersection is the straight line

y=(z-a)tan2a.

9. Prove that the locus of the point of intersection of two tangents
which intercept a given distance 4c on the tangent at the vertex is an
equal parabola.

10. Shew that the loocus of the point of intersection of two tangents,
which with the tangent at the vertex form a triangle of constant area
¢?, is the curve 2? (y? - 4az) =4c%al

11. If the normals at P and Q meet on the parabola, prove that
the point of intersection of the tangents at P and Q lies either on a
certain straight line, which is parallel to the tangent at the vertex, or
on the curve whose equation is y? (z +2a) + 4a®=0.

12. Two tangents to a parabola intercept on a fixed tangent
segments whose product is constant; prove that the locus of their
point of intersection is a straight line.

13. Shew that the locus of the poler of chords which subtend a
constant angle a at the vertex is the curve

(z+4a)?=4 cot?a (y? - 4az).

14. In the preceding question if the constant angle be a right angle
the locus is a straight line perpendicular to the axis.

15. A point P is such that the straight line drawn through it
perpendicular to its polar with respect to the parabola y?=4az touches
the parabola z2=4by. Prove that its locus is the straight line

2az + by + 4a2=0.
.16. Two equal parabolas, 4 and B, have the same vertex and ax’s

but have their concavities turned in opposite directions; prove that
the locus of poles with respect to B of tangents to 4 is the parabola 4.

17. Prove that the locus of the poles of tangents to the parabola
y?=4az with respect to the circle 23+ y3=2ax is the circle 2%+ y?*=as.
18. Shew the locus of the poles of tangents to the parabola
y3=4az with respect to the parabola y?=4bx is the parabola
4p?

3= 22 g,
yi=gT
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* Find the locus of the middle points of chords of the parabola
which

19. pass through the focus.

20. pass through the fixed point (k, k).

21. are normal to the curve.

22. subtend a constant angle a at the vertex.

23. are of given length I, :

24, are such that the normals at their extremities meet on the
parabola.
25. Through each point of the straight line z=my+ A is drawn

the chord of the parabola y*=4az which is bisected at the point;
prove that it always touches the parabola

(y - 2am)2=8a (z - h).

26. Two parabolas have the same axis and tangents are drawn to
the second from points on the first ; prove that the locus of the middle
points of the chords of contact with the second parabola all lie on a
fixed parabola,

27. Prove that the locus of the feet of the perpendiculars drawn
from the vertex of the parabola upon chords, which subtend an angle
of 45° at the vertex, is the curve

78— 24ar cos 0+ 16a2 cos 20 =0.

236. 7o prove that, in general, three normals can be
drawn _from any point to the parabola and that the algebraic
sum of the ordinates of the feet of these three mormals s

2ero.

The straight line

is, by Art. 208, a normal to the

parabola at the points whose coordi- v| p

nates are )
am® and —2am....... (2).

If this normal passes through X
the fixed point 0, whose coordinates lo)
are / and %, we have g

k=mh - 2am — am®, R

e am®+ (2a —h)ym+k=0............... (3),
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This equation, being of the third degree, has three
roots, real or imaginary. Corresponding to each of these
roots, we have, on substitution in (1), the equation to a
normal which passes through the point O.

Hence three normals, real or imaginary, pass through
any point O.

If m,, m,, and m, be the roots of the equation (3), we
have

my +my +my =0,

If the ordinates of the feet of these normals be y,, y,,

and y;, we then have, by (2),

Y1+ Yo+ ys=—2a (m; + my+ my) = 0.
Hence the second part of the proposition.

‘We shall find, in a subsequent chapter, that, for certain
positions of the point O, all three normals are real; for
other positions of O, one normal only will be real, and the
other two imaginary.

287. Bx. Find the locus of a point which is such that (a) two of
the normals drawn from it to the parabola are at right angles,
(B) the three normals through it cut the axis in points whose distances
Jrom the vertex are in arithmetical progression.

Any normal i8 y=mz - 2am—am?3, and this passes through the
point (h, k), if

am¥+2a-h)m+Ek=0......ccceerirrirninninas (1).
It then m,, m,, and m, be the roots, we have, by Art. 2,
My + Mg+ Mg=0,.....c00vuiirruniiernneannnns (2),
-h
Mg+ Mgy + MMy = ———, .errriereannnene (3),
k
and Mgy = = — ceoernnrinnenceneieneanas (4).

(a) If two of the normals, say m, and m,, be at right angles, we
have m;my= -1, and hence, from (4), my= ; .

The quantity ; is therefore a root of (1) and henoe, by substitution,
we have ” '
{.e. k3=a (h-8a).-
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The locus of the point g: k) is therefore the parabola y*=a (z - 8a)
whose vertex is the pomt (3a, 0) and whose latus rectum is one-quarter
that of the given parabola.

The student should draw the figure of both parabolas.

(8) The normal y=mz — 2am — am® meets the axis of 2 at a point
whose distance from the vertex is 2a+-ami. The conditions of the
question then give _

(2a + amy?) + (2a + amy?) =2 (2a + amy?),
ie. mBmd=2md.....o.oiiiiiiiiininniiiiinnns (6).

If we eliminate m,, my, and from the oquatloml (2), (3), (4),
and (5) we shall have a relation between A and k.

From (2) and (3), we have

3
- -m1ﬂ¢.+"s(m1+m.) My —ma? ... .(8).

Also, (5) and (2) give
2my?= (m; +my)? — 2mymy =my? — 2mmy,
i.e. M+ 2mmg=0....c00cc0vvirriniirnnnenns (7).
Solving (6) and (7), we have

m,m,.-sa—ll and mgl= —2x2asah.

Substituting these values in (4), we have
2a h _k

ie. 27ak’=2 (h— 2a)3,
8o that the required locus is
27ay3=2 (z - 2a)®.
288. Bx. If the normals at three points P, Q, and R meet in a
point O and S be the focus, prove that SP.SQ.SR=a.803,

As in the previous question we know that the normals at the
points (am,3, —2am,), (amy?, —2am,) and (amg, —2amg) meet in the
k) if

point (%,
My +Mg+Mg=0....cc0eevrreriiiinirinnnnnes (1),
2a h
Mgy + Mgy + MM = ——— ..cevrrrrrrrrrnnnas (2),
k
and Mg = = = cocvtinaiuenscnsnsnsiines (3).

By Art. 202 we have
SP=a(1+m), SQ=a(l+m.), and SR=a(1+my?).
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SP.8Q.SR _

Hence 2= (L+m?) (1+my?) (1 +my?)

=1+ (my? +1mg? +mg?) + (mamg® + mgPmy? +mymy?) + my P mgmy
Also, from (1) and (2), we have
my3 -+ mg? -+ mg? = (1 + Mg+ mg)? — 2 (momy + mym, -+ mymMy)

=2h—2a
a

’

and
mgdmy? + mym,? + mymgd = (mgmy + mgmy +1mymg)? — 2m mamy (m, + 1y +ms)

= (’L‘i@)’, by (1) and (2).

- - 2 k3
Hence SP.SQ.SR=1+2h 2a+ h Ba) +£’
a’ a a a’

(h—-a)®+k* _SO?

= ~a

i.e. SP.SQ.SR=S803, a.

EXAMPLES. XXX,

Find the locus of a point O when the three normals drawn from
it are such that

1. two of them make complementary angles with the axis.

2. two of them make angles with the axis the product of whose
tangents is 2.

8. one bisects the angle between the other two.
4. two of them make equal angles with the given line y=mz +c.

5. the sum of the three angles made by them with the axis is
constant.

6. the area of the triangle formed by their feet is constant.

7. the line joining the feet of two of them is always in a given
direction. :

The normals at three points P, Q, and R of the parabola y?=4az
meet in & point O whose coordinates are & and %k ; prove that

8. the centroid of the triangle PQR lies on the axis.

9. the point O and the orthocentre of the triangle formed by the
tangents at P, @, and R are equidistant from the axis,
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10. if OP and OQ make complementary angles with the axis, then
the tangent at R is parallel to SO.

11. the sum of the intercepts which the normals cut off from the
axis is 2 (h+a).

12. the sum of the squares of the sides of the triangle PQR is
equal to 2 (k- 2a)(h+10a).

13. the circle circumseribing the triangle PQR goes through the
vertex and its equation is 222+ 2y?- 2x (h+ 2a) - ky =0.

14. if P be fixed, then QR is fixed in direction and the locus of
the centre of the circle circumscribing PQR is a straight line.

15. Three normals are drawn to the parabola y?=4az cos a from
any point lying on the straight line r: bsina, Prove that the locus
of the orthocentre of the’ triangles formed by the corresponding tan-
gents is the curve ':4:+%, =1, the angle a being variable,

16. Prove that the sum of the angles which the three normals,
drawn from any point O, make with the axis exceeds the angle which
the focal distance of O makes with the axis by a multiple of x.

17. Two of the normals drawn from a point O to the curve make
complementary angles with the axis; prove that the locus of O and
the curve which is touched by its polar are parabolas such that their
latera recta and that of the original parabola form a geometrical
progression. Sketch the three ourves.

18. Prove that the normals at the points, where the straight line
lz+my=1 meets the parabola, meet on the normal at the point
(‘.“‘T,"i, 4Ll"‘) of the parabola.

19. If the normals at the three points P, Q, and R meet in a point
and if PP’, QQ’, and RR’ be chords parallel to QR, RP, and PQ
respeotively, prove that the normals at P/, @', and R’ also meet in a
point.

20. If the normals drawn from any point to the parabola cut the
line #=2a in points whose ordinates are in arithmetical progres-
sion, prove that the tangents of the angles which the normals make
with the axis are in geometrical progression.

21. PG, the normal at P to a parabola, cuts the axis in G and is

produced to Q so that GQ=4PG; prove that the other normals
whioch pass through Q intersect at right angles.

22. Prove that the equation to the circle, which passes through the
focus and touches the parabola y*=4az at the point (at3, 2at), is
22 +y?—az (3t3+1) - ay (3t - 13) + 3a%3=0,
Prove also that the locus of its centre is the curve
27ay?=(2z - a) (z — ba)?.
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23. BShew that three circles can be drawn to touch a parabola and
also to touch at the focus a given straight line passing through the
focus, and prove that the tangents at the point of contact with the
parabola form an equilateral triangle.

24. Through & point P are drawn tangents PQ and PR fo a

rabola and circles are drawn through the foous to touch the para-

ola in @ and R respectively; prove that the common chord of these
circles passes through the centroid of the triangle PQR.

25. Prove that the locus of the centre of the circle, which passes
through the vertex of a parabola and through its intersections with a
normal chord, is the parabola 2y*=az — a3,

268. A circle is described whose centre is the vertex and whose
diameter is three-quarters of the latus rectum of a parabola; prove
that the common chord of the circle and parabola bisects the distance
between the vertex and the foous.

27. Prove that the sum of the angles which the four common
tangents to & parabola and a circle make with the axis is equal to
nx+2a, where a is the angle which the radius from the focus to the
centre of the circle makes with the axis and = is an integer.

28. PR and QR are chords of a parabola which are normals at P
and Q. Prove that two of the common chords of the parabola and
the circle circumscribing the triangle PRQ meet on the directrix.

29. The two parabolas y’=4a(z-? and z?=4a(y-1) always
touch one another, the quantities I and I’ being both variable; prove
that the locus of their point of contact is the curve zy=4a3.

30. A parabola, of latus rectum I, touches a fixed equal parabola,
the axes of the two curves being parallel; prove that the locus of the
vertex of the moving curve is & parabola of latus rectum 2.,

31. Thesides of a triangle touch a parabola, and two of its angular
points lie on another parabola with its axis in the same direction ;
prove that the locus of the third angular point is another parabola.

239. In Art. 197 we obtained the simplest possible
form of the equation to a parabola.

‘We shall now transform the origin and axes in the
most general manner.

Let the new origin have as coordinates (A, k), and let
the new axis of  be inclined at 6 to the original axis, and
let the new angle between the axes be '.
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By Art. 133 we have for  and y to substitute
2 cos 6 + y co8 (w' + 0) + A4,

and x8in 0 + ysin (o' +0) + &
respectively.

The equation of Art. 197 then becomes
{x8in 0 + y sin (o’ + 0) + &k} = 4a {2 cos § + y cos (o' + 6) + A},
t.e.
{z sin 0 +y sin (o + 0)}* + 22 {k sin § — 2a cos 6}

+2y {k 8in (o' + 6) —2a cos (v’ + 0)} + k* - 4ah =0

This equation is therefore the most general form of the
equation to a parabola.

‘We notice that in it the terms of the second degree
always form a perfect square.

240. 7o find the equation to a parabola, any two
tamgents to it being the axes of coordinates and the points of
contact being distant a and b from the orsgin.

By the last article the most general form of the equa-
tion to any parabola is

(Az+ By) + 29z + 2fy + ¢=0............ (1).

This meets the axis of x in points whose abscissae are
given by
A%+ 29 +6=0 ....ccvvunnnnnnn. (2).

If the parabola touch the axis of z at a distance a from
the origin, this equation must be equivalent to

A (x—a)lP=0....ccc.oeriinnnn (3).
Comparing equations (2) and (3), we have
g=—A4%, and ¢=A4%* ............... (4).

Similarly, since the parabola is to touch the axis of y
at a distance b from the origin, we have

f=—Bb and c=B% ............... (6).
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From (4) and (5), equating the values of ¢, we have

B = A%,
80 that Botdy i (6).
Taking the negative sign, we have
2
B=—4 % g=— A%, =—A’% , and ¢=A%

Substituting these values in (1) we have, as the required
equation,

2 aﬁ
( —;—:y> —2aw—2zy+a’=0,

This equation can be written in the form

LI AP CO ARSI
G+3) -2G+5) 1=

e <\/Z‘::¢ ::I:{>2= 1,
ie. \/§+\/§=1 .................. (8).

[The radical signs in (8) can clearly have both the positive and
negative gigns prefixed. The different equations thus obtained corre-
spond to different portions of the curve. In the figure of Art. 243,

the abscissa of any point on the portion P4Q is <a, and the ordinate
" <b, 8o that for this portion of the curve we must take both signs
positive. For the part beyond P the abscissa is >a, and 2>%, 80
that the signs must be + and —. For the part beyond Q the
ordinate is >b, and %>§, so that the signs must be — and +.

There is olearly no part of the curve corresponding to two negative
signs.]




PARABOLA. TWO TANGENTS AS AXES, 219

241. If in the previous article we took the positive
sign in (6), the equation would reduce to

L ___g _
(ab —22-F 1=,

. x Y 2
.€6. (;'f-z —1) =0.

This gives us (Fig., Art. 243) the pair of coincident
straight lines Q. This pair of coincident straight lines is
also a conic meeting the axes in two coincident points at P
and @, but is not the parabola required.

242. To find the equation to the tangent at any point
(«', ¥') of the parabola

N

Let (2", ") be any point on the curve close to (z/, ¥/).
The equation to the line joining these two points is

y— g/_‘z— (=) cevirennnnnn. (1).

But, since these points lie on the curve, we have

J \/——1 ﬂ+\/¥ ....... 2),

—Ny_ B
so that ' ~/7 JQ——;\/E .................. (3).
The equation (1) is therefore
s NY =N N+ Y .
VYN N e e T
or, by (3),
,_ BN+ Ny

Yy-y=- A\/_J +J_(x— ) ......... (4).
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The equation to the tangent at (#, y/) is then obtained
by putting 2’ =« and y”’ =y, and is

y—.'/——%-_ ://Z (x—2),

ie. J N/ LA (5).

This is the requn'ed equation.

[In the foregoing we have assumed that (z’, u’;") lies on the portion
PAQ (Fig., Art. 248). If it lie on either of other portions the
propermgnsmnstbeaﬁxedtothemdmall,umm 240.]

Bx. Tofind the condition that the straight line %+ Y =1may be a

S
tangent.
This line will be the same as (5), if
f=afaz’ and g=./by
8o that ,\/: ~, and f =9,
Hence a b
This is the required condition; also, since a:'='§ and y'= %’ ,

f’ 7.
the point of contact of the given line is '

Similarly, the straight line lz+my=n wxll touch the parabola if
n . n
at b'—u—-l.

243. To find the focus of the parabola

@x y_
NN Y

Let § be the focus, O the origin, and P and @ the
points of contact of the parabola with the axes. .

Since, by Art. 230, the triangles OSP and QSO are
similar, the angle SOP= angle SQO.

Hence, if we describe a circle through 0, @, and S, then,
by Euc. 111. 32, OP is the tangent to it at O.
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Hence § lies on the circle passing through the origin
O, the point @, (0, ), and touching the axis of = at the

origin,

The equation to this circle is
o+ 2ycosw+ Y =by....connnn.. (1).
Similarly, since ¢ SOQ =, SPO, S will lie on the circle
through O and P and touching the axis of y at the origin,

t.e. on the circle
'+ 2wy cosw+ P =ax ..uu..u.enen.e.

The intersections of (1) and (2) give the point required.
On solving (1) and (2), we have as the focus the point

ab? a?h )
2).

(a’;_éi;boosw«i-b” a? + 2ab cos w + b

244. To find the equation to the axis.
If ¥ be the middle point of PQ, we know, by Art. 223,
that OV is parallel to the axis.

Now V is the point (g, %)

Hence the equation to OV is y = %x.
The equation to the axis (a line through § Ilel to
OV) is therefore { par
a’ b ab? )
Y-+ 2dbcse+l a (m_a’+2abcosm+b' :
. _ ab(a*-b)
ke W e Sab o et B
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245. 7o find the equation to the directrix.

If we find the point of intersection of OP and a
tangent perpendicular to OP, this point will (Art. 211, )
be on the directrix.

Similarly we can obtain the point on 0@ which is on
the directrix.

A straight line through the point (f; 0) perpendicular
to 0X is’

y=m(z—f), where (Art. 93) 1 +m cos w=0.

The equation to this perpendicular straight line is

then
Z+ycoso=f ..o (1).
This straight line touches the parabola if (Art. 242)

f+—f—=1, i.e. if f=_“”_°.°§i

a  bcosw at+bcosw’
The point (_“_b_f’fi“’_ , 0> therefore lies on the directrix.
@+ bcosow
. . abcosw \ . .
Similarly the point (0, Fracose ) is on it.

The equation to the directrix is therefore
z(@+bcosw)+y(b+acosw)=abcosw ...... 2).

The latus rectum being twice the perpendicular distance
of the focus from the directrix = twice the distance of the

point
(ﬁ_. b ._L.)
a? + 2ab cos w + B’ a® + 2ab cos w + b?,
from the straight line (2)
4a%? sin® 0
= (0" + 2ab cos @ + B’
by Art. 96, after some reduction.

246. 7o find the coordinates of the vertex and the
equation to the tangent at the vertex.
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The vertex is the intersection of the axis and the curve,
t.e. its coordinates are given by

y «_ a® - b? 1
Z—;—Emb’ oooooooooooooo ( )o
: o Y\ 2@ 2y
and by (a_b- ~ZLH 4120 (Art. 240),
. (Y ! 4
i.e. by . (5-3+1)_a .................. @).
From (1) and (2), we have
2=2[1- a? — b? 2 ab*(b+acosw)
4 a®+2abcos w +b* | ~ (a®+ 2ab cos w + %)
Similarly a®h (a + b cos w)?

Y=+ 2aboos w + b
These are the coordinates of the vertex.
The tangent at the vertex being parallel to the directrix,
its equation is

(a+bcosw)| x—

ab? (b + a cos w)? ]
a? + 2ab cos v + b°)?
a® (a + b cos w)?
+@racoma)[y~ m—g;m;ﬁ)aﬁ- =0
z . Y _ ab
b+acosw a+bcosw a+2abcosw+ b’

[The equation of the tangent at the vertex may also be
written down by means of the example of Art. 242.]

EXAMPLES. XXXI

1. If a parabola, whose latus rectum is 4c, slide between two
rectangular axes, prove that the locus of its foous is z%y3=c? (22+y3),
and that the curve traced out by its vertex is

t.e.

e yh=an
.2. Parabolas are drawn to touch two given rectangular axes and
their foci are all at a constant distance ¢ from the origin. Prove that
the locus of the vertices of these parabolas is the curve

z'+y'=c .
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8. The axes being reotangulnr, prove that the locus of the focus
of the parabola (2+%‘ - =4szy , a and b being variables such
that ab=c3, is the ourve (22 +y3)2=c%y.

4. Parabolas are drawn to touch two given straight lines which
are inclined at an angle w; if the chords of contact all pass through
a fixed point, prove that

(1) their directrices all pass through another fixed point, and
(2) their foci all lie on a circle which goes through the intersection of
the two given straight lines.

5. A paraboh touches two given straight lines at given points;
prove that the locus of the middle point of the portion of any tangent
which is intercepted between the given straight lines is a straight
line.

6. TP and TQ are any two tangents to a parabola and the
tangent at a third point R cuts them in P’ and Q'; prove that

TP TQ | Q0 TP _QR
7P * T@=1 * g1 =Fp=RP"

7. If a parabola touch three given straight lines, prove that each
of the lines joining the points of contact passes through a fixed point.

8. A parabola touches two given straight lines; if its axis pass
through the point (A, k), the given lines being the axes of coordinates,
prove that the locus of the focus is the curve

a?-y?- he+ ky=0.

9. A parabola touches two given straight lines, which meet at O,
in given points and a variable tangent meets the given lines in P and
Q respectively; prove that the locus of the centre of the circumedircle
of the triangle OPQ is a fixed straight line.

10. The sides 4B and 4AC of a triangle ABC are given in position
and the harmonic mean between the lengths 4B and AC is also given;
prove that the locus of the focus of the parabola touching the sides at
B a(z;d C is a circle whose centre lies on the line bisecting the angle
BAC.

11. Parabolas are drawn to touch the axes, which are inclined at
an angle w, and their directrices all pass through a fixed point (k, k).
Prove that all the parabolas touch the straight line

d + y =1
h+kseow  k+hsecw




CHAPTER XIIL
THE ELLIPSE.

247. THE ellipse is a conic section in which the
eccentricity e is less than unity.

To find the equation to an ellipse.
Let ZK be the directrix, S the focus, and let SZ be
perpendicular to the directrix.
K K’
M} M’
z 77X

There will be a point 4 on SZ, such that
Sd=¢.AZ.........cc..ccuuuue... 1).

Since ¢ <1, there will be another point 4', on ZS produced,
such that

L. 15
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Let the length A4’ be called 2a, and let C be the middle
point of A4'. Adding (1) and (2), we have

Qa=AA'=¢(4Z+A4'Z)=2.¢.0Z,
ie. CZ=2 i 3).

Subtracting (1) from (2), we have
e(A'Z-AZ)=8A"'-8SA=(8C+C4")-(C4 -C8),
i.e. e. AA'=2CS,
and hence CS=a.€.ccceurvevinnnnnnnnn. (4).

Let C be the origin, C A’ the axis of «, and a line through
C perpendicular to 44’ the axis of y.

Let P be any point on the curve, whose coordinates are
x and y, and let PM be the perpendicular upon the directrix,
and PN the perpendicular upon 44'.

The focus § is the point (- ae, 0).
The relation SP*=¢*. PM*=¢*. ZN? then gives

(@+aep+yp=e(z+ %)’, (Art. 20),

t.e @ (1-e)+y'=a"(1-¢),
ie. ‘-:-: + 57{.——?5 . T (5).

If in this equation we put 2=0, we have
y=ta~ 1- 3’9

shewing that the curve meets the axis of y in two points,
B and B, lying on opposite sides of C, such that

BC=CB=aN1—¢, ie. CB'=CA'-CS"
Let the length CB be called 3, so that
The equation (5) then becomes

a‘-’, +%;= ....................... ©).
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248. The equation (6) of the previous article may be

written
y’_l 2 _a—a (a+a)(a-=)
BT @ & a? ?
. PN* AN.N4A'
e e ey
e PN® : AN.NA' :: BC* : AC>.

Def. The points 4 and A’ are called the vertices of
the curve, 44’ is called the major axis, and BB’ the minor
axis. Also C is called the centre,

249. Since § is the point (—ae, 0), the equation to
the ellipse referred to .S as origin is (Art. 128),

z— ae)"
0
The equation referred to 4 as origin, and 4X and a
perpendicular line as axes, is
z—a)
N
. 2 ¥y 2z
6. ‘?+P—7-0.

Similarly, the equation referred to ZX and ZK as axes is,

) I

since CZ=—-,
[

The equation to the ellipse, whose foous and direotrix are any
given point and line, and whose eccentricity is known, is easily
written down.

For example, if the foous be the point (-3, 8), the directrix be
ht!noe line 22+ 8y+4=0, and the eccentricity be ¢, the required equa-
n is
14 (y - ap= (g 22T H +4)?
(Erpry-sp=p T e,
ie. 26122+ 18133 - 192zy + 1044z - 2834y +3969=0.
15—2
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Generally, the equation to the ellipse, whose focus is the point
fi g)i'whose direotrix is 4z+By+C=0, and whose ecoentricity

is e,
("f)’+(y—g)9=¢sm%g{;(})‘.

280. There exist o second focus and a second directrix
Jor the curve.

On the positive side of the origin take a point ', which
is such that SC = CS' =ae, and another point Z’, such that
zc-07'=%.

Draw Z'K’ perpendicular to ZZ', and PM' perpen-
dicular to Z'K".
The equation (5) of Art. 247 may be written in the
form
o — 2aex + a’6* + i = *x* — 2aex + @,

a 2
s.e. (ac—ae)’+y’=e’<;.. ) ,
t.e. S'Pr=¢*. PM"

Hence any point P of the curve is such that its distance
from $’ is ¢ times its distance from Z'K’, so that we should
have obtained the same curve, if we had started with §’ as
focus, Z'K’ as directrix, and the same eccentricity.

251. The sum of the focal distances of any point on the
curve 18 equal to the major axis.

For (Fig. Art. 247) we have

SP=¢.PM, and S'P=¢.PM'.
Hence
SP+8'P=¢(PM+PM)=¢c. MM’

=6.22'=2.0Z=2a (Art. 247.)

= the major axis.
Also BP=¢.PM=¢.NZ=¢.CZ+e.CN=a +ex,
and 8P=¢.PM' =¢.NZ'=¢.0Z'-¢.CN =a-ex,
where 2’ is the abscissa of P referred to the centre.
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252. Mechanical construction for an ellipse.

By the preceding article we can get a simple mechanical
method of constructing an ellipse.

Take a piece of thread, whose length is the major axis

of the required ellipse, and fasten its ends at the points §
and §’ which are to be the foci.

Let the point of a pencil move on the paper, the point
being always in contact with the string and keeping the
two portions of the string between it and the fixed ends
always tight. If the end of the pencil be moved about on
the paper, so as to satisfy these conditions, it will trace out
the curve on the paper. For the end of the pencil will be
always in such a position that the sum of its dmtances from
§ and S’ will be constant.

In practice, it is easier to fasten two drawing pins at §
and &', and to have an endless piece of string whose total
length is equal to the sum of SS" and AA4’'. This string
must be passed round the two pins at § and S’ and then be
kept stretched by the pencil as before. By this second
arrangement it will be found that the portions of the curve

near 4 and 4’ can be more easily described than in the first
method.

253. Latus-rectum of the ellipse.

Let LSL' be the double ordinate of the curve which

passes through the focus S. By the definition of the curve,
the semi-latus-rectum SZ

=e times the distance of Z from the directrix
=e.82=¢(CZ-C8)=¢.0Z—-¢.CS
=a —a¢® (by equations (3) and (4) of Art. 247)

B (At 247
=;. ( o .)

254. To trace the curve
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The equation may be written in either of thé forms

6r z=+a, / 1—%: ................... (3).

From (2), it follows that if a?>a?, t.e. if 2>a or <-a,
then y is impossible. There is therefore no part of the
curve to the right of 4’ or to the left of A. ~

From (3), it follows, similarly, that, if y>b or <,
a is impossible, and hence that there is no part of the curve
above B or below B'.

If x lie between —a and + a, the equation (2) gives two
equal and opposite values for y, so that the curve is sym-
metrical with respect to the axis of .

_If y lie between — b and + b, the equation (3) gives two
equal and opposite values for «, so that the curve is sym-
metrical with respect to the axis of .

If a number of values in succession be given to x, and
the corresponding values of y be determined, we shall
obtain a series of points which will all be found to lie on a
curve of the shape given in the figure of Art. 247.

'3
255. The gquantity %+%—1 18 megative, zero, or

positive, according as the point («, y') lies within, upon, or
without the ellipse.

Let @ be the point («, %), and let the ordinate QN
through @ meet the curve in P, so that, by equation (6) of
Art. 247,

If @ be within the curve, then ¥/, i.e. QN, is < PN, so
t

* PN | «
%< —5—2—, 2.6 <l—¢?.
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Hence, in this case,
%] y'l
P + ] < l,
%] '3
ze. % + %-— 1 is negative.

4

Similarly, if @' be without the curve, 3 > PN, and then
L ] 2
% + % -1 is positive.

256. 7o find the length of a radius vector from the
centre drawn in a given direction.

The equation (6) of Art. 247 when transferred to polar
coordinates becomes

r*cos’d  r*sin’f

i

¢ ]
giving Ao @0
b2 cos? 0 + a?sin® 0

‘We thus have the value of the radius vector drawn at any
inclination 6 to the axis,

. a®h?
Smw r’=mé, ‘WO B6o th&t the grﬁ&test
value of » is when 6 =0, and then it is equal to a.
Similarly, 6 = 90° gives the least value of , viz. b.

Also, for each value of 8, we have two equal and opposite
values of 7, so that any line through the centre meets the .
curve in two points equidistant from it.

257. Auxiliary circle. Def. The circle which is
described on the major axis, 44', of an ellipse as diameter,
is called the auxiliary circle of the ellipse.

Let NP be any ordinate of the ellipse, and let it be
produced to meet the auxiliary circle in @.

Since the angle 4QA4’ is a right angle, being the angle
in a semicircle, we have, by Euc. v1. 8, QN?*=AN . N4'.
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Hence Art. 248 gives
PN*® : QN* :: BC? : AC?,
PN BC b
so that Q_N =z@8< a

Y g

The point @ in which the ordinate NP meets the
auxiliary circle is called the corresponding point to P.

The ordinates of any point on the ellipse and the
corresponding point on the auxiliary circle are therefore to
one another in the ratio 4 : a, ¢.e. in the ratio of the
semi-minor to the semi-major axis of the ellipse.

The ellipse might therefore have been defined as follows :

Take a circle and from each point of it draw perpen-
diculars upon a diameter ; the locus of the points dividing
these perpendiculars in & given ratio is an ellipse, of which
the given circle is the auxiliary circle.

258. Eccentric Angle. Def. The eccentric angle
of any point P on the ellipse is the angle ¥CQ made with
the major axis by the straight line C'Q joining the centre C
to the point @ on the auxiliary circle which corresponds
the point P. :

This angle is generally called ¢.



THE ECCENTRIC ANGLE. 233

‘We have CN=0@Q. cos ¢=acosd,
and NQ=CQsin ¢p=asin ¢.

Hence, by the last article,

NP=§. NQ=bsin .

The coordinates of any point P on the ellipse are there-
fore a cos ¢ and bsin ¢.

Since P is known when ¢ is given, it is often called
“the point ¢.”

259. To obtain the equation of the straight line joining
two points on the ellipse whose eccentric angles are given.

Let the eccentric angles of the two points, P and P, be
¢ and ¢', so that the points have as coordinates

(acos ¢, bein ) and (acos @', bsin ¢').
The equation of the straight line joining them is
bsin ¢’ ~bsin¢
acosd —acosgp > 2% %)

_b 2cos}(¢p+¢)sing(¢' —¢) a
"o Tsmi(gr ) i) 0

y—bsing=

__b omi(p+4)

. TTa sy e ) BT

2.e.

;ws¢—-;i’:+%sin¢;¢ —cos¢oos¢+¢+sin¢sini§£
=008[¢—¢;¢]=008¢_2¢’ ----------- (l)-

This is the required equation.

Cor. The points on the auxiliary circle, oon-espondmg to P and
P, have as coordinates (a cos ¢, a sin ¢) and (a cos ¢', a sin ¢').

The eqnahon to the line joining them is therefore (Art. 178)

¢+¢ Y. ¢+¢ ¢—¢'
a0 g tgtin Tgo=00s 5T .
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This straight line and (1) clearly make the same intercept on the
major axis,

Hence the straight line joining any two points on an ellipse, and
the straight line joining the corresponding points on the auxili
circle, meet the major axis in the same point.

EXAMPLES. XXXII

1. Find the equation to the ellipses, whose centres are the
origin, whose axes are the axes of coordinates, and which pass
through (a) the points (2, 2), and (3, 1),
and ) the points (1, 4) and (-6, 1).

Find the equation of the ellipse referred to its centre

2. whose latus rectum is 5 and whose eccentricity is §,

3. whose minor axis is equal to the distance between the foci and
whose latus rectum is 10,

4, whose fooi are the points (4, 0) and (-4, 0) and whose
ecoentrioity is }.

5. Find the latus rectum, the eccentricity, and the coordinates
of the foci, of the ellipses

(1) 22+3y3=ad, (2) 62%+4y?=1, and (3) 9274 5y?-80y=0.

6. Find the eccentricity of an ellipse, if its latus rectum be equal
to one half its minor axis.

7. Find the equation to the ellipse, whose focus is the point
(-1, 1), whose directrix is the straight line z —y+8=0, and whose
eccentricity is 4.

8. Isthe point (4, - 8) within or without the ellipse

522+ Ty2=112?

9. Find thelengths of, and the equations to, the focal radii drawn

to the point (4 ,/3, 5) of the ellipse
252+ 16y3=1600,

10. Prove that the sum of the squares of the reciprocals of two
perpendicular diameters of an ellipse is constant,

11. Find the inclination fo the major axis of the diameter of the
ellipse the square of whose length is (1) the arithmetical mean,
(2) the geometrical mean, and (8) the harmonical mean, between the
squares on the major and minor axes,

12. Find the locus of the middle points of chords of an ellipse
which are drawn through the positive end of the minor axis,

13. Prove that the locus of the intersection of AP with the
straight line through 4’ perpendicular to 4'P is a straight line which
is perpendicular to the major axis.
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14, Q is the point on the auxiliary circle corresponding to P on
the ellipse; PLMis drawn parallel to CQ to meet the axes in L and M;
prove that PL=) and PM=a.

15. Prove that the area of the triangle formed by three points on
an ellipse, whose eccentric angles are 6, ¢, and y, is
iabsin"s;wsin t—;—osing—T-‘ﬁ.
Prove also that its area is to the area of the triangle formed by the

corresponding points on the auxiliary circle a8 b : a, and henoce that
its area is & maximum when the latter triangle is equilateral, i.c. when

16. Any point P of an ellipse is joined to the extremities of the
major axis; prove that the portion of a directrix intercepted by them
subtends a right angle at the corresponding focus.

17. Shew that the perpendiculars from the centre upon all chords,
;vhioh join the ends of perpendicular diameters, are of constant

o

18. If , B, v, and & be the eocentric angles of the four points of
intersection of the ellipse and any circle, prove that

a+pB+y+3 is an even multiple
of x radians,

[See Trigonometry, Paxt II, Art. 81.]

19. The tangent at any point P of a circle meets the tangent at a
fixed point 4 in T, and T is joined to B, the other end of the
diameter through 4; prove that the locus of the intersection of 4P

and BT is an ellipse whose eccentricity is 1

O
20. From any point P on the ellipse, PN is drawn perpendicular
to the axis and produced to Q, so that NQ equals PS, where S is a
foous; prove that the locus of Q is the two straight lines y +ex+a=0.

21, Given the base of a triangle and the sum of its sides, prove
that the locus of the centre of its incircle is an ellipse.

29, With a given point and line as focus and directrix, a series
of ellipses are described; prove that the locus of the extremities of
their minor axes is a parabola.

28. A line of fixed length a+b moves 8o that its ends are always
on two fixed dicular straight lines; prove that the locus of a
Eﬁ,int’ which divides this line into portions of length a and b, is an

pse.

24, Prove that the extremities of the latera recta of all ellipses,
having a given major axis 2a, lie on the parabola z3= —a (y - a).



236 COORDINATE GEOMETRY.

260. 7o find the intersections of any straight line with

the ellipse
@ ¥
pr + —b-;= ) P (1)
Let the equation of the straight line be
Y=ML+C ernrnninennnennnnnnn, (2)

The coordinates of the points of intersection of (1) and
(2) satisfy both equations and are therefore obtained by
solving them as simultaneous equations.

Substituting for y in (1) from (2), the abscissae of the
points of intersection are given by the equation

2 (mx+c)
atTw T
e x? (a'm? + b%) + 2a’mex + o (*— b°)=0....... (3).

This is a quadratic equation and hence has two roots,

real, coincident, or imaginary.

Also corresponding to each value of x we have from (2)
one value of .

’

The straight line therefore meets the curve in two points
real, coincident, or imaginary.

The roots of the equation (3) are real, coincident, or
imaginary according as
(2a*me)*—4 (b*+a*m?) x a® (c?—b?) is positive, zero, or negative,
i.e. according as b%(b%+a*m?) —b%? is positive, zero, or negative,
i.e. according as ¢ is <= or > a’m?+ b3,

261. To find the length of the chord intercepted by the
ellipse on the straight line y = mx + c.

As in Art. 204, we have

2a*me a’(ct—b?)
R Ty L R TS

_ 2ab Na'mi+ 8 — ¢

80 that &) — Xy agw— .
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The length of the required chord therefore
=N@—my + -y =@ —z) T+m®
_2ab N1 +mJa'm® + B —c*
- a*m? + b?
262. 7o find the equation to the tangent at any point
@) ¥) of the cllipse.

Let P and @ be two points on the ellipse, whose coordi-
nates are (2, ) and (2", ¥").

The equation to the straight line PQ is

y—y’:i,_i(w—w) ............... (1).
Since both P and @ lie on the ellipse, we have

..................

: ' -9y +y)__@-2) (" +7)

) b2 a® -
. Y-y _ba+d

: FEr e b
On substituting in (1) the equation to any secant PQ
becomes

o +a ,

y—y’-—;—im(w—m) ............ (4).

To obtain the equation to the tangent we take @
indefinitely close to P, and hence, in the limit, we put
o'=2' and Yy’ =y

)
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The equation (4) then becomes
, b
y-y=-5 —:(‘”"“")»
w’ A
bﬂ
The required equa.tlon is therefore
xx’
whe=
Cor. The equation to the tangent is therefore ob-

tained from the equation to the curve by the rule of
Art. 152.

== 3/‘ =1, by equation (2).

t.e.

263. Toﬁ/mithceqmtmtoata/ngmtmtermsqfthc
tangent of its inclination to the major axis.

As in Art. 260, the straight line

meets the ellipse in points whose abscissae are given by
o (b* + a*m®) + 2mea’e + a* (c* — b%) = 0,

and, by the same article, the roots of this equation are
coincident if

¢=na'm¥ + B,
In this case the straight line (1) is a tangent, and
it becomes -
y=mx+4 JaimIF B ............... @
This is the required equation. '

Since the radical sign on the right-hand of (2) may
have either + or — prefixed to it, we see that there are two
tangents to the ellipse having the same m, i.e. there are
two tangents parallel to any given direction.

The above form of the equation to the tangent may be deduced
from the equation of Art. 262, as in the case of the parabols
(Art. 206). It will be found that 'the point of contact is the point

-am b
(Ja‘m’+b" Namit b’) :
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264. By a proof similar to that of the last article, it

may be shewn that the straight line
xcoBa+ysina=p
touches the ellipse, if
pi=alcos? a+ bisinta.
Similarly, it may be shewn that the straight line
le+my=mn

touches the ellipse, if a*® + b*m®=n2

265. ZFquation to the tangent at the point whose
eccentric angle i8 ¢.

The coordinates of the pomt are (a cos ¢, b sin ¢).

Substituting «’ = @ cos ¢ and y' = bsin ¢ in the equation
of Art. 262, we have, as the required equation,

Ecoq¢+§ng¢=1 ............... .

This equation may also be deduced from Art. 259.
For the equation of the tangent at the point “¢” is
obtained by making ¢'= ¢ in the result of that article.

Bx. Find the intersection of the tangents at the points ¢ and ¢'.
The equations to the tangents are

fcos¢+’—’sin¢-1=0,

and _oos¢' sm¢' 1=0,

The required point is found by solvmg these equations,
‘We obtain
a b _ -1 _ 1
sing—-sing’ ~ cos¢’'—cosp ~ ging'cosp-cosg'sing  sin(p-g¢)’
i.e.

L}
ke

PP . 0-0 0 . P-F .. P-0, 9-9
2-sm—§— 2b gin 3 sin 3 Zam-Toos
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cos } (p+9¢') gin § (¢ +¢)
cos}(¢p-¢)’ cos§ (p-¢)" ,
266. Equation to the normal at the pont (', ¥f).

The required normal is the straight line which passes
through the point (2, ') and is perpendicular to the
tangent, i.e. to the straight line

B

5%+ —.
Ty
Its equation is therefore
y-y =m(x-o),
b’ . a’
where m (—‘W ==1, te m= bTi/:” (Art. 69).
The equation to the normal is thereforey —y = %-'Z, (-2,

Hence =z

a and y=>

¢.e — S S—

267. Equation to the normal at the point whose eccentric
angle s ¢,
The coordinates of the point are a cos ¢ and bsin ¢.
Hence, in the result of the last article putting
o =acos¢p and y' =Dbsin¢,

z—acosp y—bsing

it becomes T3 g
a b
. & o= _b_y_ -
s.e. ry @=— il
The required normal is therefore

ax sec ¢ — by cosec ¢ = a2 — b,

e -y
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%268. Eguation to the normal in the form y=mz +c.
The equation to the normal at (z’, y) is, as in Art. 266,

ey (5-1)

ay’
Let %—m, Mthat——b—z;".

, 2 g
Henoe, since (¢, y’) satisfies the relation %; + !!b_’=1’ we obtain

.
V=Javom
The equation to the normal is therefore
(#-V)m
v= Ja’ +0%md’
This is not as important an equation as the corresponding equa-
tion in the case of the parabola. (Art. 208.)

‘When it is desired to have the equation to the normal expressed
in terms of one independent parameter it is generally better to use
the equation of the provmus article.

269. To Sind the length of the subtangent and sub-

- Let the tangent and normal at P, the point («, y),
meet the axis in 7' and ¢ respectwely, and let PV be the

ordinate of P.
L. 16
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The equation to the tangent at P is (Art. 262)
m
S S DO ).

To find where the stralght line meets the axis we put
y =0 and have

‘I
m=:—:,, i.e. CT=-%,,

e CT.CN=a*=C4A%.................. (2).
Hence the subtangent N7’
—er-oN=% o -2

The equation to the normal is (Art. 266)
% — w‘l _ y- ’
T =
a 5
To find where it meets the axis, we put y =0, and have
-2 -y

= ¢ ]
T_T._ b’

a IT’

ie. C@=x= aa'——a:'—- b

d=e.o=¢.CN...3).

Hence the subnormal N G’ ,
=CN—-CG=(1-¢)CN,
t.e. NG:NC:1-6:1
1 0% a?. (Art. 247.)
Cor. If the tangent meet the minor axis in £ and'Pn
be perpendicular to it, we may, similarly, prove that

Ct.Cn=0

270. Some propexties of the ellipse.

(a) 8G=e.SP, and the tangent and normal at P bisect the
external and internal angles between the focal distances of P.

By Art. 269, we have CG =e2z'.
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Hence SG=8C+CG=ac+e'r'=e.8P, by Art. 351.

Also S'G=08'-CG=e(a—ex’)=¢.S'P.

Hence SG:8G::SP: S'P.

Therefore, by Eue. vi, 8, PG bisects the angle SPS’,

It follows that the tangent bisects the exterior angle between
SP and S'P.

(8) If SY and S'Y’ be the perpendiculars from the foci upon the
tangent at any point P of the ellipse, then Y and Y’ lie on the auxiliary
circle, and SY.S'Y'=03. Also CY and S'P are parallel.

The equation to any tangent is
zoosatysina=p .....ccccviirirnrennnnn (1),
where p=afa?cos? a +b3gin? a (Art. 264).

The perpendicular SY to (1) passes through the point (- ae, 0)
and its equation, by Art. 70, is therefore

(z+ae)sina-yecosa=0 ........ueeneennnns 2.
If Y be the point (h, k) then, since ¥ liea on both (1) and (2), we
ve

h 008 a + ksin a= \/a?cos® a + b3 sinta,
and hsin a—-kocos a= —aesin a= - \/a?— b sin®a.

. . . 22 Bl
Yuggm aal;d'a.ddmg Jﬁ?ﬁs?fiﬁ?” we have h%+k%=a?, s0 that
Similarly it may be proved that ¥’ lies on this circle.
Again § is the point (- ae, 0) and &' is (ae, 0).
Henoe, from (1),
SY=p+aecosa, and S'Y'=p-accosa. (Art. 75.)

Thus SY.8'Y' =p*-a’e3cos?a :
=a%c08? a+b?gin? a - (a? - b7) cos’a
=

a?

Also CTB.CTI-V'

a a(a~eCN)
and therefore 8’T=C-W o= ——mr—'.

LOT___ e oy
“ FTTa=¢.CNT5P"
Hence CY and S'P are parallel. Similarly CY’ and SP are

162
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(v) If the normal at any point P meet the major and minor azes
in G aud 9, and if CF be the perpendicular upon this normal, then
PF.PG=0b® and PF.. Pg=al.

The tangent at any point P (the point.«¢") is
z Yoo o .
| ' aooa¢+5sm¢_l. o
Hence PF =perpendicular from C upon this tangent .
1 ab

\/oos“q& sin? ¢ Jb’cos’¢+a’sm’¢
N & T .
The normal at P is

2N

If we put y—O, we have CG=2

3
PG’ (aooa¢— 4cos¢) +b%sin? ¢
. . bt ’
¢ = 730087 ¢+ blsin’ g,
i.e. PG:-;Z- N L
From this and (1), we have PF.PG=U*.
If we put z=01n'(2), we see that g is the point

(0-52 uing).

Hence  Pg®=a%cos? ¢+ (b gin ¢+¢—‘——b—"8in ¢)’{

b
so that . . ./b’oos’¢+a’sm’¢
From this result md (1) we therefore have
PF. Pg=a’,

271. 7o find the locus qf the point of mtersectwn of
tangents which meet at right angles.

Any tangent to the ellipse is
y =mx + Na¥m? + b,

and a perpendicular tangent is

Coo y—-—m+\/a’<-'-——) + 0%,
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Hence, if (h, k) be their point of intersection, we have

k—mh= ./__T’ (1),
and mk+h=nNa*+0m’.................. @).

If between (1) and (2) we eliminate m, we shall have a
relation between A and %k Squaring and adding these
equations, we have

(B + A% (1 + m?) = (a®+ %) (1 + m®),
i.e. R+kB=a*+0
Hence the locus of the point (4, k) is the circle
2+ yt=a+b,
i.c. a circle, whose centre is the centre of the ellipse, and
whose radius is the length of the line joining the ends

of the major and minor axis, This circle is called the
Director Circle.

Find the equation to the tangent and normal

1. at the point (1, $) of the ellipse 423+ 9y2=20,

9. at the point of the ellipse 527+ 3y? =137 whose ordinate is 2,
3. at the ends of the latera recta of the ellipse 923+ 16y3=144.

4. Prove that the straight line y =z + ./ touches the ellipse
8z +4y3=1.

5. Find the eqnahons to the tangents to the ellipse 423+ 8y3=5
which are parallel to the straight line y=3z+17.

Find also the coordinates of the points of contact of the tangents
which are inclined at 60° to the axis of .

6. Find the equstlong to the tangents at the ends of the latera
recta of the ellipse — P +y =1, and shew that they pass through the
mterseotxons of the axis and the directrices.

7. Find the points on the ellipse such that the tangents there
are equally inclined to the axes. Prove also-that the length of the
perpendicular from the centre on either of these tangents is

Ja’+b’ :
2 ©
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8. In an ellipse, referred to its centre, the length of the sub-
tangent corresponding to the point (3, A%) is 3#; prove that the
eocentricity is .

9, Prove that the sum of the squares of the perpendiculars on

any tangent from two points on the minor axis, each distant \/a?— b2
from the centre, is 2a®.

10. Find the equations to the normals at the ends of the latera
reota; and prove that each passes through an end of the minor axis if
et4ed=1.

11. If any ordinate MP meet the tangent at L in @, prove that
MQ and SP are equal,

12. Two tangents to the ellipse intersect at right angles; prove
that the sum of the squares of tie chords which the auxiliary g’rxr‘:sle
intercepts on them is constant, and equal to the square on the line
joining the fooi.

13. If P be a point on the ellipse, whose ordinate is y’, prove
that the angle between the tangent at P and the focal distance of P

is tan—1 2,
aey

14,’ Shew that the angle between the tangents to the gllipse
at %—,:1 and the circle 22+ y3=ab at their points of intersection is
g 222

wab®

15. A circle, of radius r, is conocentric with the ellipse; prove

that the common tangent is inclined to the major axis at an angle

o, [ri-b0 .
tan FA and find its length.

16. Prove that the common tangent of the ellipses
2!y 2 oy 22
atp=gmdnt+E+T=0

subtends a right angle at the origin. .
17. Prove that PG.Pg=SP.S'P, and CG.CT=CS$3,

18. The tangent at P meets the axes in 7' and ¢, and CY is the
ndicular on it from the centre; prove that (1) I't . PY=a?-13,
and (2) the least value of Tt is a+b. *

19, Prove that the perpendicular from the focus upon any tangent
and the line joining the centre to the point of contact meet on the
corresponding direotrix.

20. Prove that the straight lines, joining each focus to the foot of
the perpendicular from the other focus upon the tangent at any
point P, meet on the normal at P and bisect it.
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21, Prove that the circle on any focal distance as diameter touches
the auxiliary circle.

22. Find the tangent of the angle bgtwe;an CP and the normal at
P, and prove that its greatest value is as;: . '
23. Pro’ve tl:at the str:.ight line lz+my=n is a normal to the

. 0% b al—
ellipse, if 2tm= ( “,b’)—
24. Find the locus of the point of intersection of the two straight
tz y

i = z W 4
hnes;—;+t—0anda+b 1=0.

2 taﬁn:ve also that they meet at the point whose eccentric angle is
-1t.
25. Prove that the locus of the middle points of the portions of
tangents included between the axes is the curve
ad
28
26. Any ordinate NP of an ellipse meets the auxiliary circle in

Q; prove that the locus of the intersection of the no: at P and
Q is the circle B+y?=(a+b)%
27. The normal at P meets the axes in G and g; shew that the
loci of the middle points of PG and Gg are respectively the ellipses
da? i 3 2= (a3 b3)2
m'i' o) =1, and az’+b’y —1(a b’) .
28. Prove that the locus of the feet of the perpendicular drawn
from the centre upon any tangent to the ellipse is
r3=a%cos? 0+%sin?g. [Use Art. 264.]
29. If a number of ellipses be described, having the same major

axis, but a variable minor axis, prove that the tangents at the ends of
their latera recta pass through one or other of two fixed points,

80. The normal GP is produced to Q, so that GQ=n. GP.
. : 23 ¥
Prove that the locus of Q is the ellipse FEre—ne) + o=
81. If the straight line y=mx+ ¢ meet the ellipse, prove that the

equation to the circle, described on the line joining the points of
intersection as diameter, is

(a?m3+ b3) (22 +y?) + 2macx - 2b%cy + ¢? (a?+ b%) - a%? (1 +m%)=0.
32. PM and PN are perpendiculars upon the axes from any point

P on the ellipse. Prove that MN is always normal to a fixed
concentria ellipse.

V]
+ ;—,:4.

1



248 . COORDINATE GEOMETRY. [Exs, XXXIIIL.}

38. Prove that the sum of the eccentric angles of the extremities
of a chord, which is drawn in a given direction, is constant, and
equal to twice the eccentric angle of the point at which the tangent is
parallel to the given direotion.

3 2
34. A tangent to the ellipse %, + Z—, =1 meets the ellipse

zt g
atp=etd

in the points P and Q; prove that the tangents at P and Q are at
right angles.

272. To prove that through any given point (z,, y,)
there pass, in general, two tangenis to an elltpse. -

The equation to any tangent is (by Art. 263)

y=ma+Nam +B.................. 1).
If this pass through the fixed point (z,, %,), we have
Y, — mx, = A/a’m? + B, '

t.e. ! — 2mayy, + mPe® = a'm? + B,
i.e. m? (2, —a*) - 2mayy, + (y,2 - 8%) =O0.........(2)..

For any given values of «, and g, this equation is in
general a quadratic equation and gives two values of m

(real or imaginary).
Corresponding to each value of m we have, by sub-
stituting in (1), a different- tangent. -
The roots of (2) are real and different, if
(- 2z,9,)* ~ 4 (2,2 — a*) (,® — b*) be positive,

t.e if b’z.? + a’,* — a%?* be positive,
t.e. if iy + ' 1 be positi
.e. o i positive,

t.e. if the point (w,, y,) be outside the curve. .
The roots are equal, if
“B,? + aly,® — o’
be zero, ¢.¢. if the point (z,, y,) lie on the curve.
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The roots are imaginary, if

aa !, %1? _
be negative, i.e. if the pomt (2, ¥,) lie within the curve
(Art. 255).

273. ZEquation fto the chord of contact of tangents
drawn from a point (z, y,).

The equatlon to the tangent at any point @, whose
coordinates are «' and ¥/, is

a:v’ yy
bi
Also the tangent at the point R, whose coordinates are
«" and y”, is
= gy
A

If these tangents meet at the point 7', whose coordi-
nates are x, and y,, we have.

d ’
2+ 4’% S RO (),
. dl "
and ?.laT + -'/_'g_= ..................... (2).

For, since (1) is true, the point (2, ') lies on (3).
Also, since (2) is true, the point (", ") lies on (3).
Hence (3) must ‘be the equation to the straight line

joining (#', ¥') and (2", y”), i.e. it must be the equation to
@R the required chord of contact of tangents from (x, ¥,).

274. To find the equation of the polar of the point
(%1, ) with respect to the ellipse

w’
’g: 1. [Art. 162.]



250 COORDINATE GEOMETRY.

Let @ and R be the points in which any chord drawn
through the point (x,, y,) meets the ellipse [Fig. Art. 214},

Let the tangents at @ and R meet in the point whose
coordinates are (A, k).

‘We require the locus of (4, &).

Since QR is the chord of contact of tangents from
(h, %), its equation (Art. 273) is
xh yk
E; + %—,— =1.
Since this straight line passes through the point (z,, #,),

we have
%+ ’%=1 ..................... Q).

Since the relation (1) is true, it follows that the point
(h, k) lies on the straight line

FHER=1 ceevenens(2)r

Hence (2) is the equation to the polar of the point
(‘”u ?/1)-

Cor. The polar of the focus (ae, o) is

L-%_1, 40 2=2
ad T e’

i.e. the corresponding directrix.

275. When the point (z,, ;) lies outside the ellipse,
the equation to its polar is the same as the equation of the
chord of contact of tangents from it.

‘When (z,, #,) is on the ellipse, its polar is the same as
the tangent at it.

As in Art. 215 the polar of (x,, %) might have been
defined as the chord of contact of the tangents, real or
imaginary, drawn from it. '

276. By a proof similar to that of Art. 217 it can be
shewn that If the polar of P pass through T, then the polar
of T passes through P.
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277. To find the coordinates of the pole of any given
line
dz+By+C=0 ...ccuuuvennenn. ).

Let (x,, %)) be its pole. Then (1) must be the same as
the polar of (z,, y,), t.e.

1m0 ).
Comparing (1) and (2), as in Art. 218, the required pole
is easily seen to be
de By
<— c’ o

278. To find the equation to the pair of tangents that
can be drawn to the ellipse from the point (x,, ¥,).

Let (h, k) be any point on either of the tangents that
can be drawn to the ellipse.

The equation of the straight line joining (%, k) to
(1, 3) is &
Yy-h= x:%i(”_”n);
. _k-y hy, — ke,
7.6 Y= m x+ —-’::w—l- .

If this straight line touch the ellipse, it must be of the
form

y=mex+Ja'm + 0.  (Art. 263.)

Hence
- — 2
m= k 3 , and (,ﬂ/---—-—l hvl) =a'm®+ b%
h -2 h—x
Hence (hy, — kac,)’ = a? (k y‘) b,
\ h—2z -

But this is fr.e condition that the point (4, k) may lie
on the locus '
(wy ~2y)=a® (y— ) + B (@~ )" ...... (1)

This equation is therefore the equation to the requu-ed
tangents.
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Tt would be found that (1) is equivalent to
(g—:+ %’—: - 1). (a—i‘—: +‘%‘2—iI - l> ="(a;—?+ ‘Z/b%‘ - 1>’.
279. To find the locus of the middle points of parallel

chords of the ellipse.

‘Tet the chords make with the axis an angle whose
tangent i8 m, so that the equation to any one of them,
QR, is |

C YSMEACeriiiniieeiian 1),
where ¢ is different for the different chords,
Y -~
AR

This straight line meets the ellipse in points whose
abscissae are -given by the equation

@ (mx+c) 1
‘ at B
i.e. @® (a*m? + b°) + 2a’mex + a® (¢ — %) =0 ...... (2).

Let the roots of this equation, ¢.e. the abscissae of @
and R, be #, and a,, and let ¥, the middle point of QR, be
the point (&, k).

Then, by Arts. 22 and 1, we have

2, + o, a*me
hf = 1 2 = aema + b’ ............... (3)0
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Also V lies on the straight line (1), so that

k=mh+e..cccoovvnnvinnnn. (4)
If between (3) and (4) we eliminate ¢, we have
po_ @'m (k— mA)
T atm+ bt

t.e. " Vh=—a'mk .........ooonnnnne. ().

Hence the point (%, k) always lies on the straight-line
2
y=- ;f; Zovrniiiiiiiiiiienne (6)

The required locus is therefore the straight line
b’
y =mx, where my=—is

. b’ <
6. U == = eeviiieneieeenenanns .

280. Equation to the chord whose middle paint is (h, k).

The required equation is (1) of the foregoing article, where m and
¢ are given by equations (4) and (5), so that

2
The required eqnatton is themfore
‘ b a%k3+ B3
y=-a” @k
i.e. f(y—k)+—(z-h)=0.
b? a?
1t is therefore parallel to the polar of (k, ).

281. Diameter. Def. The locus of the middle
points of parallel chords of an ellipse is called a diameter,
and the chords are called its double ordinates.

,By equation (6) of Art. 279 we see that Any diameter
passes through the centre C.

Also, by equation (7), we see that the diameter y = m,:c
bisects all chords pa.ra.llel to the diameter y = ma, if
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But the symmetry of the result (1) shows that, in this
case, the diameter y = mx bisects all chords parallel to the
diameter y=my.

Such a pair of diameters are called Conjugate Diameters.
Hence

Conjugate Diameters. Def. Two diameters are
said to be conjugate when each bisects all chords parallel
to the other.

Two diameters y=ma and y=mx are therefore con-
Jjugate, if

b
mm1=—a!-

282. The tangent at the extremity of any diameter is
parallel to the chords which it bisects.

In the Figure of Art. 279 let («, y') be the point P on
the ellipse, the tangent at which is parallel to the chord
@R, whose equation is

The tangent at the point («, ¥) is

m‘
] + yb'iz/ =1 i, (2).
Since (1) and (2) are parallel, we have
b
nm=-— "a—’?/ 2
t.e. the point (2, 3/) lies on the straight line
b’
V=" om®

But, by Art. 279, this is the diameter which bisects QR
and all chords which are parallel to it.

Cor. It follows that two conjugate diameters C'P and
CD are such that each is parallel to the tangent at the
extremity of the other. Hence, given either of these, we
have a geometrical construction for the other.

-— . - ——————
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283. The tangents at the ends of any chord meet on the
diameter which bisects the chord. )

Let the equation to the chord QR (Art. 279) be

Let T be the point of intersection of the tangents at @
and R, and let its coordinates be z;, and y,..

Since QR is the chord of contact of tangents from 7', its
equation is, by Art. 273,
xh  yk
R
The equations (1) and (2) therefore represent the same
straight line, so that

S (@).

b%h
-
t.e. (k, k) lies on the straight line

m=

=— 5=
y== 5%

which, by Art. 279, is the equation to the diameter bisect-
ing the chord QR. Hence 7' lies on the straight line C'P.

284. If the eccentric angles of the ends, P and D, of a
pair of conjugate diameters be ¢ and ¢, then ¢ and ¢’ differ
by a right angle.

Since P is the point (a cos ¢, b sin ¢), the equation to
CPis .

8o the equation to CD is
b s .
y=2x._tan - SRR ¢)3
These diameters are (Art. 281) conjugate if
b »
tandtang’=—~,

i.e if tan ¢ = —cot ¢’ = tan (¢’ 90°),
i.e if P—-¢' =190
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Cor. 1. The Eointa on the auxiliary circle' correspond-
ing to P and D subtend a right angle at the centre.
For if p and d be these points then, by Art. 258, we
have
' LpCA'=¢ and LdCA'=¢'.
Hence
LpCd= L dCA'— LpCA'=¢ - =90".

Cor. 2. In the figure of Art. 286 if P be the point ¢,
then D is the point ¢ + 90° and D’ is the point ¢ — 90°.

285. From the previous article it follows that if P be
the point (a cos ¢, b sin ¢), then D is the point

{acos (90° + ¢), bsin (90° + ¢)} i.e. (—asing, beosd). -

Hence, if PN and DM be the ordinates of P and D,

we have
NP CM CN MD
——==—, and — = —

b [N

286. If PCP' and DCD' be a pair of conjugate dia-
meters, then (1) CP?*+ CD? is constant, and (2) the area of
the parallelogram formed by the tangents at the ends of these
diameters 18 constant.
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Let P be the point ¢, so that its coordinates are a cos ¢
and bsin ¢. Then D is the point 90° + ¢, so that its co-
ordinates are

acos (90° + ¢) and bsin (90°+ o),
e —asin¢g and bcos ¢
(1) We therefore have
CP? = a®cos® ¢ + b*sin? ¢,
and CD?=a?sin® ¢ + b* cos® ¢.

Hence CP*+CD*=a*+b?

= the sum of the squares of the semi-axes of the ellipse.

(2) Let KLMN be the parallelogram formed by the
tangents at P, D, P’, and D'

By Eue. 1. 36, we have

area KLMN =4 . area CPKD
=4.CU.PK=4CU.CD,

where CU is the perpendicular from C upon the tangent
at P.

Now the equation to the tangent at P is
' z Ygind—1=
Eoos¢+ bsm¢ 1=0,
so that (Art. 75) we have

o 1 _ ab _ab
" Jcos®¢ sin*¢ .Jalsin®é+bicos’d CD’
a tTE
Hence CU.CD=ab.

Thus the area of the parallelogram KLMN = 4ab,
which is equal to the rectangle formed by the tangents
at the ends of the major and minor axes,

287. The product of the focal distances of a point P is
equal to the square on the semidiameter parallel to the tangent
at P.

If P be the point ¢, then, by Art. 251, we have
SP=a+aecos¢, and S'P=a — aecos ¢.

L. 17
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Hence SP.8S'P=a"—d’¢dcos’® ¢
=a'— (a*—b%) cos? ¢
=a'sin?® ¢ + b* cos?
=CD
288. Bx. If Pand D be the ends of conjugate diameters, find
the locus of-
(1) the middle point of PD,
(2) the intersection of the tangents at P and D,
and (8) the foot of the perpendicular from the centre upon PD.
P is the point (a cos ¢, bsin ¢) and D is (- a gin ¢, bcos ¢).
(1) If (= y) be the middle point of PD, we have
_acosp—asing bein ¢+ bcos ¢
=2 - 2
If we eliminate ¢ we shall get the required locys. We obtain

g s e g
7+ ja=1[(008 ¢ — sin $)?+ (sin ¢ + cos ¢)]=}.

The locus is therefore a concentric and similar ellipse.

[N.B. Two ellipses are similar if the ratios of their axes are the
same, 80 that they have the same eccentricity.]

(2) The tangents are

z ,md y=

z Y.

T y =
and amn¢+booa¢_l.

Both of these equations hold at the intersection of the tangents.
It we eliminate ¢ we shall have the equation of the locus of their
intersections.
By squaring and adding, we have
22yt
) + o =3,
80 that the locus is another similar and concentrie ellipse.

(3) By Art. 259, on putting ¢'=90°+ ¢, the equation to PD is
2 cos (45°+¢)+%sin (45°+ ¢) =008 45°.

Let the length of the perpendicular from the centre be p and let it
make an angle w with the axis. Then this line must be equivalent to

2008 w+y 8in w=p.
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Comparing the equations, we have

cos (46° + ¢) £30000008% wpoos 450 , and sin (45°+¢)= b sin w 0os 45° .

Hence, by squaring and adding, 2p%=a®008® w+ b*gin®w, i.c. the
locus required is the curve
9r3=? 008" 0+ b38in20, f.e. 3 (2%+y%1=aled+ bYO
289. [Egquiconjugate diameters. Let P and D be ex-
tremities of equiconjugate diameters, so that CP?= CD?3,
If the eccentric angle of P be ¢, we then have
a?cos® ¢ + b*sin® p = a*sin? ¢ + b* cos® ¢,

giving tan’ p=1,
s.e. ¢ =45° or 135°.
The equation to CP is then
b
y=x. a tan ¢,
s.e Y=+ b X, (1),
~a

and that to CD is y=-—m§cot¢,

. _b
s.e. Y=F @ 2).

If a rectangle be formed whose sides are the tangents
at A, 4', B, and B’ the lines (1) and (2) are easily seen to
be its diagonals.

The directions of the equiconjugates are therefore along
the diagonals of the circumscribing rectangle.

The length of each equiconjugate is, by Art. 286,

@+
2

290. Supplemental chords. Def. The chords
joining any point P on an ellipse to the extremities, R and
R', of any diameter of the ellipse are called supplemental
chords.

Supplemental chords are parallel to conjugate diameters.
17—2
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Let P be the point whose eccentric angle is ¢, and R
and R’ the points whose eccentric angles are ¢, and
180° + ¢,.

The equations to PR and PR’ are then (Art. 2569)

: ¢;¢1+%sin¢%#-l=°°“¢;2¢"”“(l)’

and
gm¢+180°+¢1+gsin¢+180°+¢,___m¢—180°-¢,
a 2 b 2 2 ’
: 2. ptd Yy btd_ . d-h

t.e. = 8in +Zcos g = sin— e (2)

The “m” of the straight line (1) =_%cot'!’; $

The “m” of the line (2) =(b—ltan¢—1§i‘-.
2

The product of these “m’s” = — %i , 80 that, by Art. 281,
the lines PR and PR’ are parallel to conjugate diameters.
This proposition may also be easily proved geometrically.
For let ¥ and V' be the middle points of PR and PR’,

Since V and C are respectively the middle points of RP and RR’,
the line CV is parallel to PR’, Similarly CV”’ is parallel to PR.

Sinoe CV bisects PR it bisects all chords parallel to PR, i.e. all
chords parallel to CV’. 8o CV’ bisects all chords parallel to C¥.

Hence CV and CV” are in the direction of conjugate diameters and

therefore PR’ and PR, being parallel to CV and CV" respectively, are
parallel to conjugate diameters.
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291, To find the equation to an ellipss referred o a
pair of conjugate diameters.

Let the conjugate semi-diameters be CP and CD (Fig.
Art. 286), whose lengths are a’ and &' respectively.

If we transform the equation to the ellipse, referred to
its principal axes, to CP and CD as axes of coordinates,
then, since the origin is unaltered, it becomes, by Art. 134,

of the form
Az’ + 2Hxy + By'=1 ................ (1).
Now the point P, (&', 0), lies on (1), so that
Aa"=1..cociuiuiinininnnnnn 2).
So since @, the point (0, '), lies on (1), we have
By* =
Hence 4= 1,,, and .B-b,,

Also, since CP bisects all chords parallel to CD, there-
fore for each value of = we have two equal and opposwe
values of y. This cannot be unless A =0.

The equatlon then becomes
o:' y’ -1
b”
Cor. If the axes be the equiconjugate diameters, the
equation is #* + y* =a”. The equation is thus the same in

form as the equation to a circle. In the case of the ellipse
however the axes are oblique.

292. It will be noted that the equation to the ellipse,
when referred to a pair of conjugate diameters, is of the
same form as it is when referred to its principal axes.
The latter are merely a particular case of a pair of conjugate
diameters.

Just as in Art. 262, it may be shewn that the equation
to the tangent at the pomt («, y)is
v =1

l| + bl’
Similarly for the equation to the polar.
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Bx. If QVQ’ be a double ordinate of the diameter CP, and if the
tangent at Q meet CP in T, then CV.CT=CP3.

If Q be the point (z’, y'), the tangent at it is
zz’  yy

a’—’ +'-bT’=l.
L
Putting y =0, we have z=%,
o a® CP*
t.e. CT='7 =7’
.. CV.CT=CPs.

EXAMPLES. XXXIV.

2
1. In the ellipse % + ’—’9— =1, find the equation to the chord which
passes through the point (2, 1) and is bisected at that point.

2. Find, with respect to the ellipse 423+ Ty%=8,
(1) the polar of the point ( - 4, 1), and
(2) the pole of the straight line 12z + Ty +16=0.

3. Tangents are drawn from the point (3, 2) to the ellipse
#%+4y*=9. Find the equation to their chord of contact and the
equation of the straight line joining (3, 2) to the middle point of this
chord of contact.

4, Write down the equation of the pair of tangents drawn to the
ellipse 822+ 2y2?=5 from the point (1, 2), and prove that the angle

: betweenthemistan"ll-zsi@.

]
5. In the ellipse ;_:_*_yﬁ___ 1, write down the equations to the

diameters which are conjugate to the diameters whose equations are
a [4
z-y=0, z+y=0, Y=3% and y=-z.
a
6. Shew that the diameters whose equations are y +32=0 and
4y — £=0, are conjugate diameters of the ellipse 822+ 4y%=5.

7. If the product of the perpendiculars from the foci upon the
polar of P be constant and equal to ¢3, prove that the loous of P is the
ellipse b4a? (c?+ ale?) + claty?=atdt, .

8. Shew that the four lines which join the foci to two points P
and Q on an ellipse all touch a circle whose centre is the pole of PQ.
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9. If the pole of the normal at P lie on the normal at Q, then
shew that the pole of the normal at Q lies on the normal at P,

10. CK s the pe?endioular from the centre on the polar of any
point P, and PH is the perpendicular from P on the same polar and
is produced to meet the major axis in L. Shew that (1) CK. PL =03,
and (2) Ifhe produot of the perpendiculars from the foci on the polar
=CK.LM.

‘What do these theorems become when P is on the ellipse ?

11. In the previous question, if PN be the ordinate of P and the
polar meet the axis in T', shew that CL=¢2. CN and CT .CN=a3.

12. If tangents TP and TQ be drawn from a point T, whose
coordinates are h and &, prove that the area of the triangle TPQ is

R K 3 h® k3
“"(zﬁzf‘) +(a's+b‘= '
and that the area of the quadrilateral CPTQ is
) $
ab(-‘z—,i-?-l) .

13. Tangents are drawn to the ellipse from the point

al

(7= ~a+®);
prove that they intercept on the ordinate through the nearer focus a
distance equal to the major axis.

14. Prove that the angle between the tangents that can be drawn
from any point (z,, y,) to the ellipse is

-"’_x2 !Il’_—
o \/a, +% 1
Yy, —a'- :

15. If T be the point (z,, %), shew that the equation to the
straight lines joining it to the foci, S and &', is

(zy — zy)* - a%? (y — y,)*=0.

Prove that the bisector of the angle between these lines also
bisects the angle between the tangents TP and T'Q that can be drawn
from T, and hence that

LSTP=,8'TQ.

16. If two tangents o an ellipse and one of its foci be given, prove
that the locus of its centre is a straight line.

17. Prove that the straight lines joining the centre to the inter-
sections of the straight line y=mz+ \/ a’1n;+ L with the ellipse are
conjugate diameters.
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18. Any tangent to an ellipse meets the director circle in p and d;
prove that Cp and Cd are in the directions of conjugate diameters of
the ellipse.

19. If CP be conjugate to the normal at @, prove that CQ is
conjugate to the normal at P.

20. If a fixed straight line parallel to either axis meet a pair of
conjugate diameters in the points K and L, shew that the circle
d:ﬁoribeq on KL as diameter passes through two fixed points on the
other axis,

21. Prove that a chord which joins the ends of a pair of conjugate
diameters of an ellipse always touches a similar ellipse.

922. The eccentric angles of two points P and Q on the ellipse are
¢, and ¢,; prove that the area of the parallelogram formed by the
tangents at the ends of the diameters through P and Q is

4ab coseo (¢, — ¢5),
and hence that it is least when P and Q are at the end of conjugate
diameters.

23. A pair of conjugate diameters is produced to meet the
%rec;trix; shew that the orthocentre of the triangle so formed is at

e focus.

24. If the tangent at any point P meet in the points L and L’
(1) two parallel tangents, or (2) two conjugate diameters,
prove that in each case the rectangle LP . PL’ is equal to the square
on the semidiameter which is parallel to the tangent at P.

25. A point is such that the perpendicular from the centre on its
polar with respect to the ellipse is constant and equal to c; shew that
its locus is the ellipse

2 2 1
atp=a
3 3
26. Tangents are drawn from any point on the ellipse ?ﬁ + % =1

to the circle 22+ y3=72; prove that the chords of contact are tangents
to the ellipse a3z3+ by2=1%

Ifrl,=£§+l—:'§. prove that the lines joining the centre to the points
:llli contact with the circle are conjugate diameters of the second
pse.
27. CP and CD are conjugate diameters of the ellipse; prove that
the locus of the orthocentre of the triangle CPD is the curve
2 (b%y*+a'a?)=(a? - b7 (b%y* ~ a%%)".
28. If circles be described on two semi-conjugate diameters of the

ellipse a8 diameters, prove that the locus of their second points of
intersection is the curve 2 (x®+y2)3=a%?+b%3,
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293. To prove that, in general, four normals can be
drawn from any point to an ellipse, and that the sum of the
eccentric angles of their feet is equal to an odd multiple of
two right angles.

The normal at any point, whose eccentric angle is ¢, is

If this normal pass through the point (A, k), we have
ah bk _

cosp sing

For a given point (A, %) this equation gives the

eccentric angles of the feet of the normals which pass
through (&, k).

Let t&n%:t, 8o that
1- tamt 2 2 tan 2
cos ¢ = 2_1-¢ and sin ¢ 2 2
= eEsm— = N = = —
L+ tam® 17 Letam® 147
Substituting these values in (1), we have
1+ 1+¢
vl Tab s
t.e. blt' + 2¢* (ah + a’e”) + 2t (ah —a'e®) — bk =0 ... (2).

Let ¢,, 5, ¢, and ¢, be the roots of this equation, so that,
by Art. 2, '

ah + aléd
bt byt byt bt =2 Zk“ ............ ),

tlt’+tltl+tlt4+tat;+t’t‘+t3t‘=o eeccsccas (4),

ah — a’e*

byl + tbiy + bty + Gilgty =— 2 e ceeeen (B),
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Hence (T'rigonometry, Art. 125), we have

2 ‘_ts ﬁ ¢'¢ 81—8 4 —8
tan( tgtets “1-6+8 0

. Pt Pt Pt
o 3

=a0,

=nm+ ¢ 3
and hence b1+ Pyt +p=2n+1)x
=an odd multiple of two right angles.

294. We shall conclude the chapter with some ex-
amples of loci connected with the ellipse.

Bx. 1. Find the locus of the intersection of tangents at the ends
of chords of an ellipse, which are of constant length 2¢c.

Let QR be any such chord, and let the tangents at @ and R meet
in a point P, whoseooordmatesare(h, k).

Sinoce QR is the polar of P, its equation is

k. yk

S+% L R Q).
The abscisses of the points in which this straight line meets the

ellipse are given by
(%) -5 (-5
1—— =313 -—3) |
a

a3 h’ k3 2zh K2
i.e. a’ ) - ’b—2=0-
If z, and z, be the roots of thu equation, i.e. the abscissem of Q
and R, we have
2a%%h at(b3- k%)

R e T S e b

o (g~ 2= (2 + g - myzy = “‘[_”’(’;;,f’;;’—)‘:””]"’ ()

If y, and y, be the ordinates of Q and R, we have from (1)

]
z.h k

and 7’,‘ + y—;”—= ’ i

go that, by subtraction, )

bh
Y2-h= ‘a—ak‘(-"’n‘-“l)-
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The condition of the question therefore gives
= oy 27+ - =1+ ) a2
=1 ‘“""“Z;,’,’,.",’,’ZZ;;‘;”" —9%) by (@).
Henoe the point (k, k) always lies on the curve
(o) (F ) ()

which ig therefore the locus of P,

Bx. 2. Find the locus (1) of the middle points, and (2) of the poles,
of normal chords of the ellipse.

The chord, whose middle point is (, %), is parallel to the polar of
(h, k), and is therefore

R LAY DA ).
If this be a normal, it must be the same as
azsec - byocosec f=a? bi..................us (2)
‘We therefore have
asecd -boosecd  a?-b?
&% ik
a b a® " b
a8 Mo
8o that cos&:mm) ('55+F)’
. h* K3
aad sin=- gt (@* 1)
Henoe, by the elimination of 4,

a® B8\ [h® K3\%
F+F) ;2+ F) =(a?-b%3,
The equation to the required locus is therefore

(G0 (35t

Again, if (z,,y;) be the pole of the normal chord (2), the latter
equation must be equivalent to the equation

e T ®).
Comparing (2) and (8), we have
asseol):__b_’ﬂg_o:a,_b"
Lot : y; " '
—00g? =2 Y 1
8o that 1=008%0 +sin o'(z1’+y.’) @
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and hence the required locus is
a® b
Aty
Bx. 8. Chords of the ellipse 2+ 2
5 of the ellipse ath

3 2
and coazal ellipse % + %,=1 ; find the locus of their poles.

Any tangent to the second ellipse is
Y=ma+ A JamI+ B ....ccvveeeneeennne (1).

Let the tangents at the points where it meets the first ellipse meet
in (h, k). Then (1) must be the same as the polar of (h, &) with
respect to the first ellipse, i.e. it is the same as

zh k
F+”——1=o ........................... (2).

=(a%- 892,

=1 always touch the concentric

b
8ince (1) and (2) coincide, we have
m —1_~/¢W+ﬁ’
2 S S
@ P
Hence m=—§;—:, and Ju%’+ﬂ“=%’.
Eliminating m, we have
2 hﬁ -b‘
damtfep
4.e. the point (k, k) lies on the ellipse
‘fﬁ+p_‘ 3—1
a” Ty =h

2
i.e. on a concentric and coaxal ellipse whose semi-axes are ‘;:— and »

B
respectively.

EXAMPLES. XXXV.

The tangents drawn from a point P to the ellipse make angles 6,
and 6, with the major axis; find the locus of P when

1. 6,+0,is constant (=2a). [Compare Ez, 1, Art, 235.]
2. tan 6, +tan 6, is constant (=c).

8. tan 6, - tan 6, is constant (=d).

4, tan?6,+tan? 0, is constant (=X).
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Find the locus of the intersection of tangents
5. which meet at a given angle a.

6. if the sum of the eccentrio angles of their points of contact
be equal to a constant angle 2a.

7. if the difference of these ecoentric angles be 120°,
8. if the lines joining the points of contact to the centre be

9. if the sum of the ordinates of the points of contact be equal to b.
Find the loous of the middle points of chords of an ellipse

10. whose distance from the centre is the constant length c.

11. which subtend a right angle at the centre.

12. which pass through the given point (, k).

13. whose length is constant (=2c).

14. whose poles are on the auxiliary circle,

15. the tangents at the ends of which intersect at right angles.

16. Prove that the locus of the intersection of normals at the
ends of conjugate diameters is the curve

2 (a%2 + b2y%)* = (a? - b%)? (a%2® - DYYY)2,

17. Prove that the loocus of the intersection of normals at the ends
of chords, parallel to the tangent at the point whose eccentric angle is
a, i8 the conic

2 (az 8in a + by 008 a) (az cos a + by sin a) = (a® - H%)? sin 3a c0s? 2a.

If the chords be parallel to an equiconjugate diameter, the loous
is a diameter perpendicular to the other equiconjugate.

18. A parallelogram oircumscribes the ellipse and two of its
opposite angular points lie on the straight lines z®=~#2; prove that
the locus of the of two is the conic

z3 ¢y @\ _

19. Circles of constant radius ¢ are drawn to pass through the
ends of a variable diameter of the ellipse. Prove that the locus of
their centres is the curve

(22 +y?) (a®22 + b3y? + a%b3) =¢? (a?2% + b%yT).

20. The polar of a point P with respect to an ellipse touches a
fixed circle, whose ocentre is on the major axis and which passes
through the centre of the ellipse. Shew that the locus of P is a

parabola, whose latus rectum is a third proportional to the diameter
of the circle and the latus rectum of the ellipse.

21. Prove that the locus of the pole, with re:geot ygo tlie ellipse, of

any tangent to the auxiliary circle is the curve at =
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292, Shew that the locus of the pole, with respect to the auxiliary
circle, of a tangent to the ellipse is & similar concentric ellipse,
whose major axis is at right angles to that of the original ellipse.

23. Chords of the ellipse touch the parabola ag’: —2b% ; prove
that the locus of their poles is the parabola ay?=2b%z. ‘

24, Prove that the sum of the angles that the four normals
drawn from any point to an ellipse make with the axis is equal to
the sum of the angles that the two tangents from the same point
make with the axis.

[Use the equation of Art. 268.]

25. Triangles are formed by pairs of tangents drawn from any
point on the ellipse .

et + Byt (a4 B9 to the ellipse 5 + =1,

and their chord of contact. Prove that the orthocentre of each such.
triangle lies on the ellipse.

26. An ellipse is rotated through a right angle in its own plane
about its centre, which is fixed ; prove that the locus of the point of
intersection of a tangent to the ellipse in its original position with
the tangent at the same point of the curve in its new position is

(a+1) (23447~ o~ B) =2 (o~ D) ay.

27. If Y and Z be the feet of the perpendiculars from the foci
upon the tangent at any point P of an ellipse, prove that the tangents
at Y and Z to the auxiliary circle meet on the ordinate of P and that
the locus of their point of intersection is another ellipse.

28. Prove that the directrices of the two parabolas that can be
drawn to have their foci at any given point P of the ellipse and to
pass through its foci meet at an angle which is equal fo twice the
eccentric angle of P. .

29. Chords at right angles are drawn through any point P of the
ellipse, and the line joining their extremities meets the normal in the
point Q. Prove tlamt Q is the same for all such chords, its

. . a%3%cosa —a?belsina
coordinates being o and porn <
Prove also that the major axis is the bisector of the angle PCQ,
and that the locus of @ for different positions of P is the ellipse

_.,s+yc_ aa_bz)z
atp=\ais)




CHAPTER XIIL

THE HYPERBOLA.

295. Tax hyperbola is a Conic Section in which the
" eccentricity e is greater than unity.

To find the equation to a hyperbola.
Let ZK be the directrix, S the focus, and let SZ be
perpendicular to the directrix.

There will be a point 4 on AZ, such that
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Since e¢> 1, there will be another point 4’, on SZ pro-
duced, such that
SA'=€¢ . A'Z.........c.cvvvene. 2).

Let the length 44’ be called 2a, and let C' be the middle
point of 44’
Subtracting (1) from (2), we have
20=AA'=e. A'Z-¢.AZ
=e[CA’ + CZ]-e[CA—-CZ]=e¢.2CE,

ie. (07 £ L cenens (3).

Adding (1) and (2), we have
e(AZ+ A'Z)=84'+ 84 =208,
e e. A4’ =2.CS8,
and hence CS=ae....cccovuuvriiniiinnnnnnas (4).

Let C be the origin, C'SX the axis of «, and a straight
line C'Y, through C perpendicular to CX, the axis of y.

Let P be any point on the curve, whose coordinates are
« and y, and let P be the perpendicular upon the directrix,
and PN the perpendicular on 44’.

The focus § is the point (ae, 0).
The relation SP2=¢*. PM*=¢*. ZN* then.gives

(ac—-ae)’+y’=e’[ —g:r,

i.e. a? — 2aex + a’e® + y* = e%® — 2aex + a’.
Hence 2?(f—-1)-y*=a(e-1),
. 2y
s.6. ;’—m—l .................. (5)-

Since, in the case of the hyperbola, ¢ > 1, the quantity
@’ (¢"—1) is positive. Let it be called &%, so that the equa-
tion (5) becomes

x: y
‘E’ - B Rk icescestiecscinsanenas (6),
where P=d%?—a?=C82-C4A"............... (7),

and therefore C8?=a+b.....c.couvnnnnnn, (8)-
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296. The equation (6) may be written
y o @-a_(z— a)(.'c-i-a)

= ;’_l a? a?
. PN AN.N4A'
2.6 b’ = _a._ ’
so that PN3: AN.NA' :: b :

If we put =0 in equation (6), we have y*=-10",
shewing that the curve meets the axis C'Y in imaginary
points.

Def. The points 4 and 4’ are called the vertices of the
hyperbola, C is the centre, 44’ is the transverse axis of the
curve, whilst the line BB’ is called the conjugate axis,
where B and B’ are two points on the axis of y equidistant
from C, as in the figure of Art. 315, and such that

BC=CB=b.

297. Since § is the pomt (ae, 0), the equation referred to the
foous as origin is, by Art. 1

2
ie. e A e

Similarly, the equations, referred to the vertex 4 and foot of the
directrix Z respeoctively as origins, will be found to be

73 y? 2

& ptg=0

2 .y 2 1
and a—i—i,‘l'———l—;,-

The equation to the hyperbola, whose foous, directrix, and ecoen-
tricity are any given quantities, may be written down as in the case
of the ellipse (Art. 249).

298. There exist a second focus and a second directrix
to the curve.

On 8C produced take a point §’, such that

8C = C8' =ae,
and another point Z’, such that
20=02"'=2
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Draw Z'M’ perpendicular to A4’, and let PM be pro-
duced to meet it in M".

The equation (5) of Art. 295 may be written in the
form
* + 2aex + a’e? + y* = e'x* + 2aex + a?,

. a 2
e (w+ae)’+y’=e’(; +a:) ,
se. S'Pr=e(Z'C + CN)*=e*. PM™.
Hence any point P of the curve is such that its distance
from $’ is e times its distance from Z’K’, so that we should

have obtained the same curve if we had started with S’ as
focus, Z'K’ as directrix, and the same eccentricity e.

299. The difference of the focal distances of any point
on the hyperbola 18 equal to the transverse axis.

For (Fig., Art 295) we have

SP=e¢.PM, and S'P=¢. PM'.
Hence S§'P—SP=e¢(PM'—PM)=¢. MM’
=e¢.Z7'=2¢.0Z=2a
= the transverse axis A4’

Also SP=¢.PM=¢.ZN=¢.CN—-¢.(Z=ex —a,
and S'P=e¢.PM'=¢.Z'N=¢.CN+e¢.Z'C=ex +a,
where o/ is the abscissa of the point P referred to the centre
as origin.

300. Latus-rectum of the Hyperbola.

Let LSL’ be the latus-rectum, s.e. the double ordinate
of the curve drawn through S.

By the definition of the curve, the semi-latus-rectum SZ
= ¢ times the distance of L from the directrix
=e¢.8Z2=¢(CS-CZ)

b’

=¢.08—eCZ=ae®—a= 2
by equations (3), (4), and (7) of Art. 295.
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301. 7o trace the curve

. 2
Y ().
The equation may be written in either of the forms
2
y=wb i | S, 2),
or x=wa g—: + 1 3)-

From (2), it follows that, if 2 < a?, s.e. if « lie between a
and —a, then y is impossible. There is therefore no part
of the curve between 4 and A4'.

For all values of 2> a? the equation (2) shews that
there are two equal and opposite values of y, so that the
curve is symmetrical with respect to the axis of . Also,
as the value of « increases, the corresponding values of y
increase, until, corresponding to an infinite value of x, we
have an infinite value of ¥.

For all values of y, the equation (3) gives two equal
and opposite values to z, so that the curve is symmetrical
with respect to the axis of y.

If a number of values in succession be given to x, and
the corresponding values of y be determined, we shall
obtain a series of points, which will all be found to lie on a
curve of the shape given in the figure of Art. 295.

The curve consists of two portions, one of which extends
in an infinite direction towards the positive direction of
the axis of «, and the other in an infinite direction towards
the negative end of this axis.

.oow? oyt . ..
302. The quantity it 1 8 positive, zero, or
negative, according as the point («, y') lies within, upon,
or wi A curve.

Let @ be the point («/, &), and let the ordinate QN
18—2
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through @ meet the curve in P, so that, by equation (6) of
Art. 295,

«* PN® 1
PRty e
' PN? o
and hence o M 1.
If @ be within the curve then ¥y, i.e. @N, is less than
;l/‘ PN? a?
PN, so that T e <~ 1.
/8
Hence, in this case, % - F >0, t.e. is positive.
Similarly, if @ be without the curve, then y' > PN, and
o' .
we have 5 F — 1 negative.

803. 7o find the length of any central radius drawn in
a given direction.

The equation (6) of Art. 295, when transferred to polar
coordinates, becomes

cos?@ sin? @
r‘( o~ )=L,
. 1 cos®@ sin*@ cos*l/b?
t.e. R i i b~ b tan® 0) ...... (1).

This is the equation giving the value of any central
radius of the curve drawn at an inclination @ to the trans-
verse axis.

So long as tan® 4 <o bx , the equation (1) gives two equal
and opposite values of » correspondmg to any value of 6.

For values of tan'0>§:, the corresponding values of

}, are negative, and the corresponding values of » imaginary.

Any radius drawn at a greater inclination than tan-?

8o
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does not therefore meet the curve in any real points, so
that all the curve is included within two stmght lines

drawn through C and inclined at an angle % tan-! 2 to CX.

Writing (1) in the form
2
cos'O(—i—ta.n’O)

we see that = is least when the denominator is greatest, t.e.
when §=0. The radius vector C4 is therefore the least.

Also, when tanO:*;b, the value of r is infinite.

For values of § between 0 and tan~' 2 the corresponding

positive values of » give the portion AR of the curve (Fig.,
Art. 295) and the corresponding negative values give the
portion 4A’R’

For values of 6 between 0 and —tan™ — b , the positive

values of R give the portion 4R,, and the negatlve values
give the portion 4A'R;". -

The ellipse and the hyperbola since they both have a
centre C, such that all chords of the conic passing through
it are bisected at it, are together called Central Conics.

304. In the hyperbola any ordinate of the curve does
not meet the circle on 44’ as diameter in real points.
There is therefore no real eccentric angle as in the case of
the ellipse.

‘When it is desirable to express the coordinates of any
point of the curve in terms of one variable, the substitutions

x=asec® and y=btan g
may be used; for these substitutions clearly satisfy the
equation (6) of Art. 295.
The angle ¢ can be easily defined geometrically.
On AA’ describe the auxiliary circle, (Fig., Art. 306)
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and from the foot &N of any ordinate NP of the curve draw
a tangent NU to this circle, and join CU. Then

CU = CNcos NCT,

e x=CN=asec NCU.
The angle NCU is therefore the angle ¢.
Also NU=CUtan ¢ =atan ¢,

8o that NP:NU:b:a.

The ordinate of the hyperbola is therefore in a constant
ratio to the length of the tangent drawn from its foot to
the auxiliary circle.

This angle ¢ is not so important an angle for the
hyperbola as the eccentric angle is for the ellipse.

805. Since the fundamental equation to the hyper-
bola only differs from that to the ellipse in having — &*
instead of b, it will be found that many propositions for
the hyperbola. are derived from those for the ellipse by
changing the sign of &%

Thus, as in Art. 260, the straight line y =ma + ¢ meets
the hyperbola in points which are real, coincident, or
imaginary, according as

A>=<a'm'-p.
As in Art. 262, the equation to the tangent at (2, y/) is
o yy
@ w -t
As in Art. 263, the straight line
Y =mx+ Naimi— b

is always a tangent.
The straight line
zcosa+ysina=p
is a tangent, if  p*=a’cos’a —b*sin?a.
" The straight line ke +my=n
is a tangent, if n® =a*P - b*m’, [Art. 264.]
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The normal at the point (¥, y') is, as in Art. 266,
z— x’ _y-y
a’ -

806. With some modifications the properties of Arts.
269 and 270 are true for the hyperbola also, if the
corresponding figure be drawn.

In the case of the hyperbola the tangent bisects the
interior, and the normal the exterior, angle between the
focal distances SP and S'P.

It follows that, if an ellipse and a hyperbola have the
same foci S and S’, they cut at right angles at any common
point P. For the tangents in the two cases are respec-
tively the internal and external bisectors of the angle SPS’,
and are therefore at right angles.

307. The equation to the straight lines joining the
points (asec¢, btan¢) and (asecd’, btang’) can be
shewn to be

o= Y B+d ¢¢"

sin = CO08

a3 TPt T 2
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Hence, by putting ¢’ = ¢, it follows that the tangent at
the point (a sec ¢, b tan ¢) is

L _Ysing=
p bsmcﬁ‘cosqs.

It could easily be shewn that the equation to the
normal is
ax sin ¢ + by = (a® + b*) tan ¢.
308. The proposition of Art. 272 is true also for the

hyperbola.

As in Art. 273, the chord of contact of tangents
from (=, ¥,) is

=¥
@ B
As in Art. 274, the polar of any point (z,, ¥,) is
Y
@ B

As in Arts. 279 and 281, the locus of the middle
points of chords, which are parallel to the diameter y = ma,
is the diameter y = m,x, where

bﬁ
mm, = ;’ o

The proposition of Art. 278 is true for the hyperbola

also, if we replace &% by — &2

309. Director circle. The locus of the intersection
of tangents which are at right angles is, as in Art. 271, -
found to be the circle «*+ y®=a?-5?% i.e. a circle whose
centre is the origin and whose radius is \/a*— 0%,

If b < a?, this circle is real.

If b°=a?, the radius of the circle is zero, and it reduces
to a point circle at the origin. In this case the centre is
the only point from which tangents at right angles can be
drawn to the curve.

If %> o the radius of the circle is imaginary, so that
there is no such circle, and so no tangents at right angles
can be drawn to the curve.
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'810. Equilateral, or Rectangular, Hyperbola.

The particular kind of hyperbola in which the lengths
of the transverse and conjugate axes are equal is called an
equilateral, or rectangular, hyperbola. The reason for the
name “rectangular ” will be seen in Art. 318.

Since, in this case, b = a, the equation to the equilateral
hyperbola, referred to its centre and axes, is «* — 3 =a?.

The eccentricity of the rectangular hyperbola is /2.

For, by Art. 295, we have, in this case,

a®+b® 2a®
6’ = a’ = ;;— = 2,
so that e=,/2.

811. Bx. The perpendiculars from t}u; cen:re upon the tangent
and normal at any point of the hyperbola 'Z—, - g—,=1 meet them in Q
and R. Find the loci of Q and R.

As in Art. 308, the straight line

zoosa+tysina=p
is a tangent, if =a%008% a - Y2 @in? a.

But p and « are the polar coordinates of Q, the foot of the perpen-
dicular on this straight line from C.

The polar equation to the locus of Q is therefore
r*=a%cos? 9 - b%sin? 4,
i.e., in Cartesian coordinates,
(8 +yTP=atel - by,

If the hyperbola be rectangular, we have a=b, and the polar
equation is

73=0a? (cos? § — sin? ) = a3 cos 2.
Again, by Art. 307, any normal is
azgin g +by=(a*+d¥)tang............ou.eee. 1).
The equation to the perpendicular on it from the origin is
bz—aysin ¢=0......cccccervveninnnnnn. 2).
If we eliminate ¢, we shall have the locus of R.

From (2), we have sin¢=z—:,
sin ¢ bz

N o S Fov e ey
Substituting in (1) the locus is

(@ +y7)? (a%y® - %) = (¥ + B3 3y,

and then tan ¢p=
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EXAMPLES. XXXVI

Find the equation to the hyperbola, referred to its axes as axes of
coordinates,

1. whose transverse and conjugate axes are respectively 3 and 4,

2. whose conjugate axis is 5 and the distance between whose foci
is 13,

3. whose conjugate axis is 7 and which passes through the point
(3’ - 2)'

j, the distance between whose foei is 16 and whose eccentricity

is A/2.

5. In the hyperbola 422~ 9y?=36, find the axes, the coordinates
of the foci, the eccentricity, and the latus rectum.

8. Find the equation to the hyperbola of given transverse axis
whose vertex bisects the distanoe between the centre and the focus.

7. Find the equation to the hyperbola, whose eccentricity is %,
whose focus is (a, 0), and whose directrix is 4z — 3y =a.

Find also the coordinates of the centre and the equation to the
other directrix.

8. Find the points common to the hyperbola 25z%- 9y3=225
and the straight E.:e 26z + 12y - 45=0.

9. Find the equation of the tangent to the hyperbola 422 — 9y3=1
which is parallel to the line 4y=>5z+17.

10. Prove that a circle can be drawn through the foci of a
hyperbola and the points in which any tangent meets the tangents at
the vertices.

11. An ellipse and & hyperbola have the same principal axes.
Shew that the polar of any point on either curve with respect to the
other touches the first curve.

12. In both an ellipse and a hyperbola, prove that the focal
distance of any point and the perpendicular from the centre upon the
tangent at it meet on a circle whose centre is the focus and whose
radius is the semi.transverse axis.

18. Prove that the straight lines ; - %:m and 'E + ;—f =
meet on the hyperbola.

14. Find the equation to, and the length of, the common tangent

8y 2 g2
to the two hyperbolas A b_’=1 and g'! - 5,;,:1.

15. In the hyperbola 16z%-9y2=144, find the equation to the
diameter which is conjugate to the diameter whose equation is z=2y.

1
’7‘ &lways
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16. Find the equation to the chord of the hyperbola
2523 — 16y3=400
which is bisected at the point (5, 3).
17. In a rectangular hyperbola, prove that
SP.S'P=CP3,

18. the distance of any point from the centre varies inversely as
the perpendioular from the centre upon its polar.

19, if thenormal at P meet the axes in G and g, then PG =Pg=PC.

20. the angle subtended by any chord at the centre is the

supplement of the angle between the tangents at the ends of the
chord.

21. the angles subtended at its vertices by any chord which is
parallel to its conjugate axis are supplementary.

3 2
922. The normal to the hyperbolaai ~¥ —1 meeta the axes in M
a? b

and N, and lines MP and NP are drawn at right angles to the axes;
prove that the locus of P is the hyperbola

a%z? - by?=(a?+ %)%,
23. If one axis of a varying central conic be fixed in magnitude

and position, prove that the locus of the point of contact of a tangent
drawn to it from a fixed point on the other axis is a parabola.

24. If the ordinate MP of a hyperbola be produced to Q, so that
MQ is equal to either of the focal distances of P, prove that the locus
of @ is one or other of a pair of parallel straight lines,

25, Shew that the loous of the centre of a circle which touches
externally two given ocircles is a hyperbola.

26. On a level plain the crack of the rifle and the thud of the ball
iking the target are heard at the same instant; prove that the
locus of the hearer is a hyperbola.

27. Given the base of a triangle and the ratio of the tangents of

halt the base angles, prove that the vertex moves on a hyperbola
whose foci are the extremities of the base.

28. Prove that the locus of the poles of normal chords with

2
respect to the hyperbola ;:— z—2=1 is the curve

y%as — 29b8= (a3 + b%) z%°,

29. Find the locus of the pole of a chord of the hyperbola which
subtends a right angle at (1) the centre, (2) the vertex, and (3) the
focus ot the curve,

80. Shew that the locus of poles with respect to the parabola

y3=4az of tangents to the hyperbola 22—y2?=a? is the ellipse
423 +y3=4a®,
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81. Prove that the loons of the pole with respect to the hyperbola
2

ai:_ %:1 of any tangent to the circle, whose diameter is the line
sz e s . . 1
joining the foci, is the ellipse prrn <L

82. Prove that the locus of the intersection of tangents to a
- hyperbola, which meet at a constant angle 8, is the curve .

(2 +y2+ 0%~ a%)2=4 cot? B (a®y? - b3z? + a%?).
83. From points on the circle 22+ y%2=a? tangents are drawn to
the hyperbola z2 — y*=a2; prove that the locus of the middle points of

the chords of contact is the curve
(z*-y)*=a*(z*+y?).

84. Chords of a hyperbola are drawn, all passing through the
fixed point (h, k); prove that the locus of their middle points is a
hyperbola whose centre is the point (g , g) , and which is similar to
either the hyperbola or its conjugate.

312. Asymptote. Def. An asymptote is a straight
line, which meets the conic in two points both of which are
situated at an infinite distance, but which is itself not alto-
gether at infinity.

z?

v _
aty=

813. 7o find the asymptotes of the hyperbola
@y 1
a B

Agin Art. 260, the straight line

meets the hyperbola in points, whose abscissae are given by
the equation

2 (b* — a®m?) — 2a®mex — a® (* + 5% =0 ...... (2).
If the straight line (1) be an asymptote, both roots of (2)
must be infinite.

Hence (C. Smith’s Algebra, Art. 123), the coefficients of
2? and 2 in it must both be zero.

‘We therefore have
¥ —a’m*=0, and a*me=0.
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Hence m=-lué, and ¢=0.
a

Substituting these values in (1), we have, ag the re-
quired equation,
b
Y= o ; 2.

There are therefore two asymptotes both passing
through the centre and equally inclined to the axis of ,
the inclination being

tan"ll.
a
The equation to the asymptotes, written as one equa-
tion, is
a3
Z-5-o

Cor. For all values of ¢ one root of equation (2) is
infinite if m=*%. Hence any straight line, which is
parallel to an asymptote, meets the curve in one point at
infinity and in one finite point.

314. That the asymptote passes through two oomoident points
at mﬁmty. i.e. touches the curve at infinity, oi be seen by finding
the equations to the tangents to the curve which pass through any

point (z,. Ezl) on the asymptote y—l—’ z.

As in Art. 305 the equation to either tangent through this point is

y=mr+ &2,"’—_',2'
where 2z1=mzl+ N
i.e. on clearing of surds,
b b?
m (21~ a%) = 2m 2 2,1+ (2, +a%) ;=0
One root of this equation is ng, 80 that one tangent through

the given point is y = % z, i.e. the asymptote itself.
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315. Geometrical construction for the asymptotes.

Let 4’4 be the transverse axis, and along the conju-
gate axis measure off CB and CB, each equal to b.
Through B and B’ draw parallels to the transverse axis
and through 4 and 4’ parallels to the conjugate axis, and
let these meet respectively in K, KX,, K, and K, as in the
figure.

Clearly the equations of K,CK, and K,CK, are
e z,and y= _b
Yy " Y= P Z,
and these are therefore the equations of the asymptotes.

316. Let any double ordinate PNP’ of the hyperbola
be produced both ways to meet the asymptotes in ¢ and ¢
and let the abscissa CNV be «.

Since P lies on the curve, we have, by Art. 302,

NP =§ Nz =’
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Since @ is on the asymptote whose equation is y =§x,
we have NQ = g x

Henco PQ=NQ-NP=L (- J&i=a),
and PQ= Ié'(x’ + Jw”—a’).

3

Therefore PQ. P'Q = o {a— (a* — at)} = 1

Hence, if from any point on an asymptote a straight
line be drawn perpendicular to the transverse axis, the
product of the segments of this line, intercepted between

the point and the curve, is always equal to the square on
the semi-conjugate axis.

Agin b —— b 3
PQ=2( N —a) =2 ¥
¢ “@; “) aa + 2" —a
_ ab
o +ala—ar

PQ is therefore always positive, and therefore the
part of the curve, for which the coordinates are positive,
is altogether between the asymptote and the transverse
axis.

Also as «’ increases, 1.e. as the point P is taken further
and further from the centre C, it is clear that PQ con-
tinually decreases ; finally, when 2’ is infinitely great, P@Q
is infinitely small.

The curve therefore continually approaches the asymp-
tote but never actually reaches it, although, at a very great
distance, the curve would not be distinguishable from the
asymptote. -

This property is sometimes taken as the definition of an
asymptote. .

317. If SF be the perpendicular from § upon an
asymptote, the point F lies on the auxiliary circle. This
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follows from the fact that the asymptote is a tangent,
whose point of contact happens to lie at infinity, or it may
be proved directly.

For

CF = CScos FOS = os P N+ B

=a.

o+ b a’ + b®
Also Z being the foot of the directrix, we have
CA*=C8. 027, (Art. 295)

and hence CF?=CS.CZ, s.e. CS:CF:: CF:CZ.

By Euc. VL 6, it follows that - CZF = + CFS=a right
angle, and hence that 7 lies on the directrix.

Hence the perpendiculars from the foci on either asymptote
meet it n the sams poinis as the corresponding directrix,
and the common points of intersection lie on the awuhm'y
circle.

318. Egquilateral or Rectangular Hyperbola.
In this curve (Art. 310) the quantities @ and b are equal.
The equations to the asymptotes are therefore y==w, i.e.
they are inclined at angles = 45° to the axis of x, and hence
they are at right angles. Hence the hyperbola is generally
called & rectangular hyperbola.

319. Conjugate Hyperbola. The hyperbola which
has BB’ as its transverse axis, and 44’ as its conjugate
axis, is said to be the conjugate hyperbola of the hyperbola
wh(i)se Bj}r&nsverse and conjugate axes are respectively 44’
and BB’

Thus the hyperbola
o .
g_:_‘_f TR ),
is conjugate to the hyperbola
x*
a_,_g_:=1 ....................... @)

Just as in Art. 313, the equation to the asymptotes of

() is ¥ 2o,
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which, by the same article, is the equation to the asymp-
totes of (2).

Thus a hyperbola and its conjugate have the same
asymptotes.

The conjugate hyperbola is the dotted curve in the
figure of Art. 323.

320. Intersections of a hyperbola with a pair of con-
Jugate diameters.

The straight line y =m,x intersects the hyperbola
< _y
@ e

in points whose abscissz are given by

A7)
a’b’
B —a*m 3’
The points are therefore real or imaginary, according as
a'm® is < or > bY,

t.e. by the equation «*=

i.e. according as

m, is numerically < or > % ............ (1),
4.e. according as the inclination of the straight line to the
axis of « is less or greater than the inclination of the
asymptotes,

Now, by Art. 308, the straight lines y =mx and y=myx
are conjugate diameters if

Hence one of the quantities m, and m, must be less
than % and the other greater than %.

Let m, be < %, so that, by (1), the straight line y=mx
meets the hyperbola in real points.
L. 19
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Then, by (2), m, must be > %, go that, by (1), the straight
line y = myx will meet the hyperbola in imaginary points.

It follows therefore that only one of a pair of conjugate
diameters meets a hyperbols in real points.

821. If a pair of diameters be conjugate with respect
to a hyperbola, they unll be conjugate with respect to its con-
Jugate hyperbola.

For the straight lines y =mx and y = my are conjugate

with respect to the hyperbola
: o
A S T ),
. b
if MMy = e 2).

Now the equation to the conjugate hyperbola only
differs from (1) in having — a? instead of a® and — 5* instead
of 5% so that the above pair of straight lines will be con-
jugate with respect to it, if

—5 W

But the relation (3) is the same as (2).

Hence the proposition.

322. If a pair of diameters be conjugate with respect
to a hyperbola, one of them meets the hyperbola in real points
and the other meets the conjugate hyperbola in real pornts.

Let the diameters be y =m,z and y =m,2, so that

2

MMy = 5
As in Art. 320 let m,<%, and hencem,>%, so that the

straight line y = m@ meets the hyperbola in real points.
Also the straight line y=mg meets the conjugate
2
hyperbola y_ 2-:: 1 in points whose absciss® are given by

bﬂ
) mg 1 . b
the equation a* (_bT - E‘) =1, i.e by fr'm,‘a’—b"
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Since m, > %, these abscissse are real.
Hence the proposition.

323. If apair of conjugate diameters meet the hyperbola
and its conjugate in P and D, then (1) CP* - CD*=q’- b,
and (2) the tangents at P, D and the other ends of the
diameters passing through them form a parallelogram whose
vertices lie on the asymptotes and whose area i8 constant.

Let P be any point on the hyperbola g—%::l whose
coordinates are (a sec ¢, b tan ¢).

The equation to the diameter C'P is therefore

_btan ¢

b,
a:.;smcﬁ.

asec¢>

By Art. 308, the equation to the straight line, which
is conjugate to CP is

" y=wasin¢'

19—2
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This straight line meets the conjugate hyperbola
y

¥ oa !

in the points (@ tan ¢, b sec ¢), and (—atan ¢, —bsec ¢) so
that D is the point (a tan ¢, b sec ¢).

‘We therefore have

CP*=asec’ ¢ + b’tt;.n’¢,

and CD?*=a® tan? ¢ + b% sec® ¢.

Henoe

CP?— CD?*=(a*—b?) (sec? p — tan? ¢) = a® — B

Again, the tangents at P and D to the hyperbola and

the conjugate hyperbola are easily seen to be .

sm¢ COB ey .cuun.... (1),

E )
Y _Zging=
and 5 g En@=cosd ......... (2)
These meet at the point
z_Yy_ 89
a b 1l-sin¢

This point lies on the asymptote C'L.
Similarly, the intersection of the tangents at P and D’

lies on CL/, that of tangents at D’ and P’ on CL’, and
those at D and P’ on CL,.

If tangents be therefore drawn at the points where a
pair of conjugate diameters meet a hyperbola and its
conjugate, they form a parallelogram whose angular points
are on the asymptotes.

Again, the perpendicular from C on the straight line (1)

- cos ¢ _ abcos¢
\/1_ 1intg Vb +atsin® $
ab ab  ab

= VPsecig+a tan’y CD PK’
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so that PK x perpendicular from C on PK = ab,
ne. area of the parallelogram CPKD = ab.

Also the areas of the parallelograms CPKD, CDK,P’,
CP’K’'D’, and CD'K,P are all equal.

The area KK ,K'K therefore = 4ab.

Cor. PK=CD=D'C=K/P, so that the portion of a

tangent to a hyperbola mtercepwd between the asymptotes
is bisected at the point of contact.

324. Relation between the equation to the hyperbola,
the equation to its asymptotes, and the equation to the conju-
gata hyperbola.

. The equations to the hyperbola, the asymptotes, and the
conjugate hyperbola are respectively

gy
Lol [T (1),
o?
(;‘--—z;=0 ........................ (2),
@ _y

and ;— y=—1 ..................... (3)

We notice that the equation (2) differs from equation g)
by a constant, and that the equation (3) differs from (2)
exactly the same quantity that (2) differs from (1).

If now we transform the equations in any way we
please—by changing the origin and directions of the axes—
by the most general substitutions of Art. 132 and by
multiplying the equations by any—the same—constant,
we shall alter the left-hand members of (gl), (2), and (3) in
exactly the same way, and the right-hand constants in the
equations will still be constants, and differ in the same way

- a8 before.

Hence, whatever be the form of the equation to a
hyperbola, the equation to the asymptotes only differs from
it by a constant, and the equation to the conjugate
hyperbola differs from that to the asymptotes by the same
constant.
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828. As an example of the foregoing article, let it be required
to find the asymptotes of the hyperbola

822 - By — 2%+52+ 11y —8=0....c0cevveen. ).

Since the equation to the asymptotes only differs from it by a
constant, it must be of the form

823 -bxy — P+ b2+ 11y +c=0...ccceuvenneene. 2).

Bince (2) represents the asymptotes it must represent two straight
lines. The oondmon for this is (Art. 116)

3(-2)c+2.4. 30 (-9 -3 () -(-2) (§)* - (- §7=0,
i.e. c=-12,
The equation to the asymptotes is therefore
8z% - bzy - 2y + bz + 11y - 12=0,
and the equation to the conjugate hyperbola is
823 - bay - 2y*+ 5z + 11y ~ 16 =0.
826. As another example we see that the equation to any
hyperbola whose asymptotes are the straight lines
Az+By+C=0 and 4,z+ B,y+C,=0,
is (4dz+ By +C) (4,2+ By +C))=N ............... 1),
where \ is any constant.

For (1) only differs by a constant from the equation to the
asymptotes, which is

(4z + By +C) (42 + By +C) =0 ............... (2).

If in (1) we substitute —A? for \* we shall have the equation to its
oonjugate hyperbola.

It follows that any equation of the form
(42+By +C) (42 + By + C) =\
represents a hyperbola whose asymptotes are
4z + By +C=0, and 4,z+ Byy+ C,=0.

Thus the equation z(z+y)=a® represents a hyperbola whose
asymptotes are 2=0 and z+y=0.

Again, the equation 22+ 2zy cot 2a — y3=a?,
i.e. (x cot & —y) (z tan a +y) =a?,
represents a hyperbola whose asymptotes are
zocota-y=0, and ztan a+y=0.
827. It would follow from the preceding articles that the

equation to any hyperbola whose asymptotes are z=0 and y=0 is
zy =oonst.
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The constant could be easily determined in terms of the semi-
transverse and semi-conjugate axes,

In Art. 828 we shall obtain this equation by direct transformation
from the equation referred to the principal axes.

EXAMPLES. XXXVIL

1. Through the positive vertex of the hyperbola a tangent is
drawn; where does it meet the conjugate hyperbola?

2. Ifeande’ bethe eccentricities of a hyperbola and its conjugate,

1
prove that atsi= 1.
8. Prove that chords of a hyperbola, which touch the conjugate
hyperbola, are bisected at the point of contact.

4. Shew that the chord, which joins the points in which a pair of
conjugate diameters meets the hyperbola and its conjugate, is parallel
to one asymptote and is bisected by the other.

5. Tangents are drawn to a hyperbola from any point on one of
the branches of the conjugate hyperbola; shew that their chord of
contact will touch the other branch of the conjugate hyperbola.

6. A straight line is drawn parallel to the conjugate axis of &
hyperbola to meet it and the conjugate hyperbola in the points P and
Q; shew that the tangents at P and @ meet on the curve
v (y* z') 4
b\B® a?)” @3’
and that the normals meet on the axis of z.

7. From a point G on the transverse axis GL is drawn perpen-
dicular to the asymptote, and GP a normal to the curve at P. Prove
that LP is parallel to the conjugate axis,

8. Find the asymptotes of the curve 223+ bzy + By + 4z + by =0,
and find the general equation of all hyperbolas having the same
asymptotes.

9. Find the equation to the hyperbola, whose asymptotes are the
straight lines z+2y+8=0, and 8z+4y+5=0, and which passes
through the point (1, - 1).

‘Write down also the equation to the conjugate hyperbola.

10. In a rectangular hyperbola, prove that CP and CD are equal,
and are inclined to the a.nysp:: angles which are oomplementary?q
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2
11, Cis the centre of the hyperbola = 2 %-,=1 and the tangent at

any point P meets the asymptotes in the pomts Q and R. Prove that
the equation to the loous of the centre of the circle circumseribing
the triangle CQR is 4 (a%?- bYy?) =(a®+b%)2

12, A series of hyperbolas is drawn having a common transverse
axis of length 2a. Prove that the locus of a point P on each hyper-
bola, such that its distance from the transverse axis is equal to its
distance from an asymptote, is the curve (8- y?)3=42?(z2- a?).

328. 70 find the equation to a hyperbola referred to its
asymptotes.

Let P be any point on the hyperbola, whose equation
referred to its axes is

Draw PH parallel to one asymptote CL to meet the
other CK’ in H and let CH and HP be k and % respec-
tively. Then 2 and & are the coordinates of P referred to
the asymptotes.

Let a be the semi-angle between the asymptotes, so that,
b

by Art. 313, ta.na=;,
sina_cosa - 1

b a N+ 5
Draw HN perpendicular to the transverse axis, and HR

parallel to the transverse axis, to meet the ordinate PM of
the point P in R.

and hence
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Then, since PH and HR are parallel respectively to CL
and CM, we have L PHR=( LCM =a.

Hence CM =CN + HR=CH cosa + HP cos a

a
00 T
and MP=RP- HN=HPsina—CHsina
b
kW T
Therefore, since CM and MP satisfy the equation (1),
we have _
(h+k)’_( -h? .. _a*+b?
FTE gy b e k=g

Hence, since (A, k) is any point on the hyperbola, the
required equation is
at4- bl

T
This is often written in the form wxy=c? where 4c®

equals the sum of the squares of the semiaxes of the
hyperbola.

Similarly, the equation to the conjugate hyperbola is,
when referred to the asymptotes,

__a,’+b'
W=""1

329. 7o find the equation to the tangent at any point
of the hyperbola xy = ¢

Let («, y’) be any point P on the hyperbola, and
', y)a p’oint @ on it, so that we have ’

and 'Y =c i, 2).
The equation to the line PQ is then

Jr

y=-9 =LY @) 3).
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But, by (1) and (2), we have

c' c*

¥’y _ & o of—a J

d—d X -a axd—a XL
Hence the equation (3) becomes
’ 0' ’
y-y =- ,x,,(a: 7 I (4).

Let now the point @ be taken indefinitely near to P, so
that 2" =2’ ultimately, and therefore, by Art. 149, PQ
becomes the tangent at P.

Then (4) becomes

e / ¥y ,
Y-y =—x—,,(x—-w) = - a—/(a:—w), by (1).
The required equation is therefore

oy +2y=2zy'=2"............... (5).
The equation (5) may also be written in the form

X
;+:7’,=2. ........... e (6).

880. T'he tangent at any point of a hyperbola cuts off a triangle
of constant area from the asymptotes, and the portion of it intercepted
between the asymptotes is bisected at the point of contact.

be Take ’the asymptotes as axes and let the equation to the hyperbola
zy=cl,
z. ¥_
7t v 2.
This meets the axes in the points (2z', 0) and (0, 2y').
If these points be L and L’, and the centre be C, we have
OL=27, and CL'=2y'.
If 2a be the angle between the asymptotes, the area of the triangle
LCL'=}CL . CL’ sin 2a=2z"y’sin 3a="72" . 2 sin  cos a =ab.
(Art. 328.)
Also, since L is the point (2z', 0) and L’ is (0, 2y’), the middle
point of LL' i8 (&, ¥'), t.e. the point of contact P.

The tangent at any point P is

a’+
2
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3831. As in Art. 274, the polar of any point (z,, )
with respect to the curve can be shewn to be
Y, + oy = 26"

Since, in general, the point (x;, y,) does not lie on the
curve the equation to the polar cannot be put into the form
(6) of Art. 329.

832. The equation to the normal at the point («/, ¥')
is y—y =m(x—2’), where m is chosen so that this line is
perpendicular to the tangent

Va2
9 == mr w/ .

If o be the angle between the asymptotes we then
obtain, by Art. 93,

m=

o -y cos w
¥y -2 cosw’
8o that the required equation to the normal is
' y(y — cosw)—z (2" ~y cosw)=y? 2"
2 2
[A]BO €08 » = CO8 2a.=008’a.—sin’a=a,—_—b-,].
a'+b
If the hyperbola be rectangular, then »=90°, and the
equation to the normal becomes 2z’ - yy' =o' —y".
333. Equation referred to the asymptotes.
One Variable.
The equation xy=c* is clearly satisfied by the substitu-
tion z=ct and y=§.

Hence, for all values of ¢, the point whose coordinates

re (ct, %) lies on the curve, and it may be called the point
3 t-”
The tangent at the point “¢” is by Art. 329,

x
E+yt=2c.
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Also the normal is, by the last article,

y (1 —¢'cos w)—x (£* — cos w) = % (1-t),
or, when the hyperbola is rectangular,

y-afi=2(1-1).

The equations to the tangents at the points “¢,” and « "
are

z +yt,=2¢, and z + yt, = 2¢,
4 ty

and hence the tangents meet at the point

(2ctlt2 2¢
L+t 4+ t) i
The line joining “#,” and “¢,,” which is the polar of this
point, is therefore, by Art. 331,
x+ytty=c (4 +1,)
This form also follows by writing down the equation
to the straight line joining the points

(ct,, tgl) and (ct,, t%)

884. Bx. 1. If a vectangular hyperbola circumscribe a triangle,
it also passes through the orthocentre of the triangle.

Let the equation to the curve referred to its asymptotes be
TY=0Clotiiiiiiniiini s (1).
Let the angular points of the triangle be P, @, and R, and let their

coordinates be
(ctp tﬂ) , (ct,, 2) , and (ct,, 5)
1 tl tﬂ
respectively.
As in the last article, the equation to QR is
Z+ytaty=c (t3+15)-

The equation to the straight line, through P perpendicular to QR,
is therefore

y-S=tala-ct
1

i = S
i.e. y+ctitatg=1yt; [z + e t,] ..................... (2).
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Similarly, the equation to the straight line through Q perpendicular

to RPis
Y+ ettty =ty [z + ‘;%‘—a] ..................... (3).
The common point of (2) and (3) is clearly
¢
(— t!tj;' - Ot!t’t,) ........................... (4),

and this is therefore the orthocentre.
But the coordinates (4) satisfy (1). Hence the proposition.
Also if (ct‘, ) be the orthocentre of the points “¢,,” “¢,,” and
“tg,” we have tlt,t,t..- -1
Bx. 2. If a circle and the rectangular hyperbola xy=c® meet in
the four points ““t,,” “t,,” “t5,” and *‘t,,” prove that
(1) titatsty=1,

(2) the centre of meam position of the four points bisects the
distance between the centres of the two curves,

and (3) the centre of the circle through the points “t,,” ““1,,” “t,” is

fnvasrgl) § (ke ko).
Let the equation to the circle be
ey -2z -y +k=0,
8o that its centre is the point (g, f).

Any point on the hyperbola is (ct, tf) . If this lie on the circle,

oyg . €2 c
we have 84 & 2gct - 2f-£+k=0,
' . ko %
8o that t‘—2;z8+2;t’—; t41=0....cccourerrninnnn. (1).
If ¢,, ty, ¢, and ¢, be the roots of this equation, we have, by Art. 2,
btgtgte=L......ocoirririiiiiirinnninnnan, @),
2
R TS @),
2
and t,t,t‘+t,t‘tl+t‘tlt,+t,t,t,=?f ........... ceneen(d)e
Dividing (4) by (2), we have
1.1.1 1 9
ot =S . oeee(B)e
Loty ot ¢ ©
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The centre of the mean position of the four points,

i.e.thepoint{ (it +t+t), g ( +t1,+t1,+1)}

is therefore the pomt 3 ';) , and this is the middle point of the line
joining (0, 0) and (g, f)

Also, since t‘.-— , we have

tidty
g= (tl+t’+t’+tt,t)’ and f=; ( tl’ z,'”‘t’t‘)

Again, since ¢t;tt,=1, we have product of the abscissae of the
four points=product of their ordinates=c*.

EXAMPLES. XXXVIII

2
1. Prove that the foci of the hyperbola a:y=a'—:l’ are given by
a4+
%"
2. Shew that two concentric rectangular hyperbolas, whose axes
meet at an angle of 45°, cut orthogonally.

3. A straight line always passes through a fixed point; prove
that the locus of the middle point of the portion of it, which is
intercepted between two given straight lines, is a hyperbola whose
asymptotes are parallel to the given lines.

4. If the ordinate NP at any point P of an ellipse be produced to
Q, 8o that NQ is equal to the subtangent at P, prove that the locus of
Q is a hyperbola.

5. From a point P perpendiculars PM and PN are drawn to two
straight lines OM and ON. If the area OMPN be constant, prove
that the locus of P is a hyperbola.

8. A variable line has its ends on two lines given in position and
passes through a given point; prove that the loocus of a point which
divides it in any given ratio is & hyperbola.

7. The coordinates of a point are a tan (§+a) and btan (0+B).
where @ is variable; prove that the locus of the point is a hyperbo

. 8., A series of ciroles touch a given straight line at a given point.
Prove that the loous of the pole of a given straight line with regard to
these circles is a hyperbola whose uy;n‘;stom are respectively a

pamllgl to the first given straight line a perpendicular to the
secon

£=y=*
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9. If a right-angled triangle be inscribed in a rectangular hyper
bola, prove that the tangent at the right angle is the perpendmnla.r
upon the hypothenuse.

10. In a rectangular hyperbola, prove that all straight lines, which

subtend a right angle at & point P on the curve, are parallel to the
normal at P.

11. Chords of a rectangular hyperbola are at right angles, and
they subtend a right angle at a fixed point O; prove that they inter-
sect on the polar of 0.

12. Prove that any chord of a rectangular hyperbola subtends
angles which are equal or supplementary (1) at the ends of a perpen-
dloular chord, and (2) at the ends of any diameter.

13. In a rectangular hyperbola, shew that the angle between a
chord PQ and the tangent at P is equal to the angle which PQ
subtends at the other end of the diameter through P.

14. Show that the normal to the rectangular yperbola zy=c? at

the point *“¢” meets the curve again at a point *‘¢’” such that
o= -1,

15. If P,, P,, and P, be three points on the rectangular hyperbola
zy=c3, whose abscissm are z,, z;, and z,, prove that the area of the
triangle P,P,P; is

2 (2, — ) (23— 2)) (1= )
2 XS ’
and that the tangents at these points form a triangle whose area is
(23— %y) (x4~ 2,) () — Z5) .
(T3 t+2y) (23 +2y) (2,+25)

16. Find the coordinates of the points of contact of common

tangents to the two hyperbolas
23-y3=38a® and zy=2a%
17. The transverse axis of a rectangular hyperbola is 2¢ and the

tes are the axes of coordinates; shew that the equation of the
chord which is bisected at the point (2¢, 8¢) is 3z + 2y =12¢.

18. Prove that the portions of any line which are intercepted
between the asymptotes and the curve are equal.

19. Shew that the straight lines drawn from a variable point on
the ourve to any two fixed points on it intercept a constant distance on
either asymptote.

20. Shew that the equation to the director circle of the conic
xy=clis 23+ 22y o8 w+ y2=4c? co8 w.

21. Pmethattheasymptotesofthehyperbolazy hz+kym
=k and y=h.,
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22. Shew that the straight line y=mz+ 2/ -m always touches the
¢
hyperbola zy =¢?, and that its point of contact is ( T=m' o= m) .

23. Prove that the locus of the foot of the perpendicular let fall
from the centre upon chords of the rectangular hyperbola zy=c?
“which subtend hslf a right angle at the origin is the curve
74— 2c%2 gin 20=c4,
24, A tangent to the parabola z%=4ay meets the hyperbola zy =k3

in two points P and Q. Prove that the middle point of PQ lies on a
pa.rabolpa.o

25. If a hyperbola be rectangular, and its equation be zy=¢3,
prove that the locus of the middle points of chords of constant length

2d is (23 +99) (zy - ) =dOzy.

96. Shew that the pole of any tangent to the rectangular hyper-
bola zy =c?, with respect to the circle #3+y3=a3, lies on a concentric
and similarly placed rectangular hyperbola.

27. Prove that the locus of the poles of all normal chords of the
rectangular hyperbola zy =c? is the curve

(2% - y®)% + 4c32y =0.

28. Any tangent to the rectangular hyperbola 4zy=ab meets the
ellipse i-""'-2 +%,=1 in the points P and Q; prove that the normals at P
and Q to the ellipse meet on a fixed diameter of the ellipse.

29, Prove that triangles can be inscribed in the hyperbola zy =c%,
whose sides touch the parabola y2=4az.

80. A point moves on the given straight line y=mz; prove that
the locus of the foot of the perpendicular let falal from the centre upon
ite polar with respect to the ellipse 25+ %=1 is a rectangular
hyperbola, oné of whose asymptotes is the diameter of the ellipse
which is conjugate to the given straight line.

81. A quadrilateral circumscribes a hyperbola; prove that the
straight line joining the middle points of its diagonals passes through
the centre of the curve.

32. 4, Bﬁ C, and D are the points of intersection of a circle and a

yperbola. If AB pass through the centre of the hyper-
bola, prove that CD passes through the centre of the circle. Tper

83. If a circle and a rectangular hyperbola meet in four points P,
@, R, and 8, shew that the orthocentres of the triangles QRS, RSP,
SPQ, and PQR also lie on & circle,

" Prove also that the tangents to the hyperbola at R and S meet
in a point which lies on the diameter of the hyperbola which is at
right angles to PQ.
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34. A sgeries of hyperbolas is drawn, having for asymptotes the

gmomd'bohsumdoih an ﬁll.lipse; sh:ﬁv thn:utellle oommonf ethords of the

and the ellipse are par: to one of the conjugate
dlmtet's of the ellipse. juew

85. A circle, passing through the centre of a rectangular hyperbola,
cuts the curve in the points 4, B, C, and D ; prove that the circum-
circle of the triangle formed by the tangents at 4, B, and C goes
through the centre of the hyperbola, and has its eentre at the point
of the hyperbola which is diametrically opposite to D.

86. Given five points on a circle of radius a; prove that the
centres of the rectangular hyperbolas, each passing through four of

these points, all lie on a circle of radius g .

387. If arectangular hyperbola circumscribe a triangle, shew that
it meets the circle circumscribing the triangle in a fourth point, which
is at the other end of the diameter of the hyperbola which passes
through the orthocentre of the triangle.

Hence prove that the locus of the centre of a rectangular hyper-
bola which eircumscribes a triangle is the nine-point circle of the
triangle.

38. Two rectangular hyperbolas are such that the asymptotes of
one are parallel to the axes of the other and the centre of each lies on
the other. If any circle through the centre of one cut the other again
in the points P, Q, and R, prove that PQR is a triangle such that each
pide is the polar of the opposite vertex with respect to the first
hyperbola.



CHAPTER XIV.

POLAR EQUATION OF A CONIC SECTION, ITS FOCUS
BEING THE POLE.

835. Let S be the focus, 4 the vertex, and ZM the
directrix ; draw SZ perpendicular to ZM.

Let ZS be chosen as the positive direction of the
initial line, and produce it to X.

Take any point P on the
curve, and let its polar co-
ordinates be r and 6, so that
we have

SP=r, and : XSP=04.

Draw PN perpendicular
to the initial line, and PM
perpendicular to the directrix.

Let SL be the semi-latus-
rectum, and let SL=1.

Since SL=¢.85Z, we have

sz=%.
e
Hence
r=SP=¢.PM=¢.ZN
=e(ZS+8N)
=e (g+SP.cose)=l+e.r.oos&
Therefore r= LI (1).
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This, being the relation holding between the polar
coordinates of any point on the curve, is, by Art. 42, the
required polar equation.

Cor. If SZ betaken as the positive direction of the initial line and
the vectorial angle measured clockwise, the equation to the curve is
l

"={¥eocost"
886. If the eonic be a parabola, we have e=1, and the equation
- I A T Y
18 "= o080 - ..6 2 2°
2!!11’5

If the initial line, instead of being the axis, be such that the axis
is inclined at an angle + to it, then, in the previous article, instead of
6 we must substitute 6 — v.

The equation in this case is then

! 1-coom(o-).
88%7. To trace the curve §=1 —ecos .

Case I. e=1, so that the equation is ;:1—0050.

‘When 0 is zero, we have -f:= 0, so that = is infinite, As
0 increases from 0° to 90°, cosd decreases from 1 to O,
and hence ; increases from O to 1, t.e ~ decreases from
infinity to

As 0 increases from 90° to 180°, cos§ decreases from
0 to — 1, and hence é increases from 1 to 2, i.c. » decreases
from 7 to 3.

Similarly, as § changes from 180° to 270°, » increases
from % to [, and, as 6 changes from 270° to 360°, » increases
from ! to .

The curve is thus the parabola o FPLAL'P'F'« of
Art. 197.

20—2
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Case II. e<1. When § is zero, we have ;=1—e,

e r= na . This gives the point 4’ in the figure of Art.

1-e
247. .
As 0 increases from 0° to 90°, cos 6 decreases from 1 to

0, and therefore 1 —ecos @ increases from 1—¢ to 1, z.e. é

increases from 1—¢ to 1, ¢.e. » decreases from o to I.

1-¢
‘We thus obtain the portion 4’PBL.
As 0 increases from 90° to 180° cos # decreases from 0
to — 1, and therefore 1 — ¢ cos @ increases from 1 to 1 +e¢,

i.e.éincre&sesfrom 1 to 1 +e, t.e. » decreases from I to ilTe'

‘We thus obtain the portion LA of the curve, where

4
S4 = i

Similarly, as 6 increases from 180° to 270° and then to
360°, we have the portions AL’ and L'B'P' 4'.

Since cos 8= cos (— 8) = cos (360° — §), the curve is sym-
metrical about the line S4'.

Case III. e>1. When 6 is zero, 1 —ecos 0 is equal
to 1-e, i.e. —(e—1), and is therefore a negative quantity,
since e> 1. This zero value of @ gives r =—1=(e—1).

‘We thus have the point 4’ in the figure of Art. 295.

Let 6 increase from 0° to cos™ (:l;-) . Thus 1-ecosé
increases algebraically from —(e—1) to —0,

e 'f"- increases algebraically from —(e—1) to —0,
s.e. r decreases algebraically from — L to —0.

e~1
For these values of & the radius vector is therefore

negative and increases in numerical length from ef—l tocw.
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‘We thus have the portion A'P/R’w of the curve. For
this portion r is negative.

If 6 be very slightly greater than oos“g-, then cos @ is

slightly less than g—, 80 that 1 —ecos 0 is small and positive,
and therefore r is very great and is positive. Hence, as 0
increases through the angle cos™ 5’ the value of  changes
from — oo to + 0.

As 6 increases from coos"el to m, 1 —ecosf increases

from O to 1+¢ and hence » decreases from ootol—i_;.

Now -ié—e is < e_—{—l . Hence the point 4, which corresponds
to 0 =, is such that S4 <S4’

For values of § between cos"% and = we therefore
have the portion, o BPA, of the curve. For this portion
# is positive.

As 6 increases from = to 21r—cos‘1%, e cos f increases
from —e to 1, so that 1 —ecos@ decreases from 1+¢ to 0,
and therefore » increases from ‘l_é-_e to . Corresponding

to these values of § we have the portion AL'R, « of the
curve, for which r is positive.

Finally, as 4 increases from 21r—cos"% to 2w, ecosd
increases from 1 to ¢, 8o that 1 —e cos 6 decreases algebraic-
ally from 0 to 1—e, t.e ; is negative and increases
numerically from 0 to ¢e— 1, and therefore » is negative and
decreases from o to ;éi . Corresponding to these values

of 6 we have the portion, o B,'A’, of the curve, For this
portion 7 is negative,
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r is therefore always positive for the right-hand branch
of the curve and negative for the left-hand branch.

It will be noted that the curve is described in the order
A'P/R 0w RPAL'R, ® 0 R4,

8388. In Case III of the last article, let any straight line be
drawn through S to meet the nearer branch in p, and the further
branch in g.

The vectorial angle of p is XSp, and we have

Sp= l
P oo XSp"

The vectorial angle of ¢ is not XSq but the angle that ¢.8 produced
makes with SX, i.e. it i8 XSq=a. Also for the point ¢ the radius
vector is negative 8o that the relation (1) of Art. 335 gives, for the
point ¢, . .

-Sq=1—coos(XSq=F-r)=1+eoosXSq’
l
“1¥ecosXSq"

This is the relation connecting the distance, Sq, of any point on
the further branch of the hyperbola with the angle XSgq that it makes
with the initial line.

i.e. Sg =

" 889. Equation to the directrices.
Considering the figure of Art. 295, the numerical values
of the distances 7 and 82" aro * and L+ 307,

. l l l
€. ; and ;+28_———(8’—1)’
. a1
since CZ= ; = G(T—T). [A.l't. 300.]
The equations to the two directrices are therefore
l
reogf=—-,
e
1 2l lettl
and r0080=_[;+_“_6’__1)]__;m‘

The same equations would be found to hold in the case
of the ellipse.
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340. ZEquation to the asymptotes.

The perpendicular distance from S upon an asymptote
(Fig., Art. 315) ;

= 08sin ACK, =ae. 5=

Also the asymptote CQ makes an angle cos"% with the

axis. The perpendicular on it from S therefore makes an

angle §+ cos™! —

Hence, by Art. 88, the polar equation to the asymptote
CQ is

b=rcos|:0-—g—cos4%]= rsin [0—008'1%].

The polar equation to the other asymptote is similarly

b=rcos [0——(321 — cos ! %)] =—rsin (0+cos";).

841. Bx. 1. In any conic, prove that

(1) the sum of the reciprocals of the segments of any focal chord
18 constant, and

(2) the sum of the reciprocals of two perpendicular focal chords is
constant,

Let PSP’ be any focal chord, and let the vectorial angle of P be a,
so that the vectorial angle of P’ is 7 +a.

(1) By equation (1) of Art, 335, we have

—S—I-,=1-eoosa,
and s;—,,:l—eoos(r+¢)=l+eoosa.
Henoo 55+ 5=
80 that Sl_'P'*'S'%':g

The semi-latus-rectum is therefore the harmonic mean between
the segments of any focal chord.
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(2) Let QSQ’ be the focal chord perpendicular to PSP, so that the
vectorial angles of Q and Q’u‘e;+¢ anda—;-{-a. ‘We then have
§%=1—eoos (;+a)=1+esin¢,
and ;—Q,=1-coos (gsz+¢)=1+eoos (5+¢)=1—e'ain¢.

2

Henoe

l l 2l

PP:SP+8P=1 “eoosa T I+eoosa 1-eloosia’
1 i 2

1+esi.na+ I-¢sina” i-efsin'a’

and QY =8Q+8Q' =

Therefore
1 _1___1-e’oos’a+1-e‘sin‘¢_2-e’
PPYoe= "o - w

and is therefore the same for all such pairs of chords.

Bx. 2. Prove that the locus of the middle points of focal chords of
a conic section i8 a conic section.

Let PSQ be any chord, the angle PSX being 6, so that
14
it wrrer L
I ' l
Se= a4 0) ~iTecosd"

a.nI:iet R be the middle point of PQ, and let its polar coordinates be
r 0.

and

Then r=SP—RP=SP—‘&;—S-9=SP;SQ
=1}l[ 1 _ 1 :I:l ecos @
1-ccosf 1+ecosb, 1-e3cos20°’
.. - e33cosdd=le.rcosd.
Transforming to Cartesian coordinates this equation becomes
B+yl-Bad=lex .......ccevvnrenrnrnennnnne (1).

If the original conie be & parabola, we have e=1, and equation (1)
becomes y?=lz, so that the locus is a parabola whose vertex is S and
latus-rectum 1.

If e be not equal to unity, equation (1) may be written in the form
le 2 Be?
-a[e-ira] W=raca

and therefore represents an ellipse or & hyperbola according as the
original conio i an ellipse or a hyperbola.
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'342. To find the polar equation of the tangent at any
point P of the conic section ;=l —ecosd.

Let P be the point (r,, a), and let @ be another point
.on the curve, whose coordinates are (r;, B), 8o that we have

l
,—_l=l—oeos«; ..................... (1),
and ;=l—ecos,8 ..................... (2).

By Art. 89, the polar equation of the line P@ is
sin (B —a) _ gin (60— a) + sin (8 - 6)
- .

Ty Y

By means of equations (1) and (2) this equation becomes
ésin(ﬁ—a):sin(o—a) {1 —ecos B} +sin (B—0) {1 —ecosa}
={sin(0 —a) + sin (B—0)} —¢ {sin (0 —a) cos B + sin(8—0)cosa}
B-a 20—a-pB
g 08

=2 sin

)

—e{(sinf cosa — cos fsina)cos B + (sin B cos H—cos Bsin §) cosa}
=20 832 008 (0- 23 8) s con psin (8- )

‘s, §=sec3;“cos(o_‘% —ecosh........(3).

This is the equation to the straight line joining two
points, P and @, on the curve whose vectorial angles, a and
B, are given.

To obtain the equation of the tangent at P we take Q
indefinitely close to P, i.e. we put 8=a, and the equation
(3) then becomes

%=cos(0-a)—ecou0

This is the required equation to the tangent at the
point a.
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848. If we assume a suitable form for the equation to the
joining chord we can more easily obtain the required equation.

Let the required equation be
;:Lcos(o—‘y)—ecoso ..................... . (1).

On transformation to Cartesian coordinates this equation is
easily seen to represent & straight line; also since it contains two
arbitrary constants, L and v, it can be made to pass through any two
points.]

If it pass through the point (r,, a), we have

1 —eoosa:}:Loos(a-—‘y)—eoosa,
1

i.e. Loog(a—=9)=L.cccrirririnnreeereranienns (2).
Similarly, if it pass through the point (r;, 8) on the curve, we have
Leos(B-9)=Lccoocccrrirrriiircraannecnas (3).
Solving these, we have, [since « and 8 are not equal]
a+p

a-y=-(B-7), be y=—73-
Substituting this value in (3), we obtain L=seo%-.
The equation (1) is then
-l-=seorpcos(0—gﬁ>—eooso.
r 2 2

h As in the last article, the equation to the tangent at the point a is
en

:-_=oos (0-a)~ecosd.

*344. To find the polar equation of the polar of any
point (ry, 6,) with respect to the conic section ;: 1—ecosé.

Let the tangents at the points whose vectorial angles
are a and 8 meet in the point (r,, 6,).

The coordinates 7, and 6, must therefore satisfy equation
(4) of Art. 342, so that

l
E:oos(@,—a)—ecosﬂ ................ (1).

Similarly,
1 :
;;:eos(ol—ﬁ)—ecosﬂ ............... 2).
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Subtracting (2) from (1), we have

c08 (6, — a) = cos (6, - B),
and therefore

6,—a=—(6,—p), [since a and B are not equal],
ie. - ®).

Substituting this value in (1), we have
l a+f
;l_eos { 3 —a} —ecos b,

. B-a

i.e. cos 3 =;+eooasol ................ (4).

Also, by equation (3) of Art. 342, the equation of the
line joining the points a and B is

£+eoos0 secp z ( 2
. l
o be ,
%.6 (l+ec050)( +eoos0)-—oos(0 6y)......(5)

This therefore is the required polar equation to the polar
of the point (ry, 6,).

*348. To find the equation to the normal at the point
whose vectorial angle 13 a.
The equation to the tangent at the point a is

;=oos(0—a)—eooso,

s.e., in Cartesian coordinates,
z(cosa—e)+ysina=/................ (1).

Let the equation to the normal be
Acosd+ Being= "

ie. ' Ax+ By=1............ reerenanas (3)
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Since (1) and (3) are perpendicular, we have
A(cosa—e)+ Bsina=0.............. (4).

. . l
8Since (2) goes through the point (iToosa , & ) we have

Acosa+ Bsina=1-ecosa............ (5).
Solving (4) and (5), we have
A=l—e6008a and B 1- ecosa)(c oosa.)

esina

The equation (2) then becomes

lesina
r(l-ecosa)’
esina 1
I—ecosa’ 7’

sinacos § + (¢ —cos a)sin =
e . gin(f-a)—esinf=~

846. If the axis of the conic be inclined at an angle y to the
initial line, 8o that the equatlon to the conic is

=l—e°0§(0—‘y),

the equation to the tangent at the point a is obtained by substituting
a—+ and § -+ for a and # in the equation of Art. 342.

The tangent is therefore
;=cos (6 —a)—ecos (0—7).

The equation of the line joining the two points a and 8 is, by the

same article,
;=mp ¢ s( —oi—;—p)—eoos(o-‘y).

The equation to the polar of the point (r,, 6,) is, by Art. 344,

{£+eoos (0-7)} {%+e cos (0,—-7)} =008 (0 - 6,).
Also the equation to the normal at the point a

. . _ elsin(a-v)
r{esm(0-7)+sm(a—0)}—1————_wos @

847. Bx. 1. If the tangents at any two points P and Q of a
conic meet in a point T, and if the straight line PQ meet the directriz
eorresponding to S in a point K, then the angle KST is a right angle,
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If the vectorial angles of P and Q be a and B respectively, the
equation to PQ i m, by equation (8) of Art. 342,

_ ﬂ a _a+p\
; =860 —— 008 ( —2—) ecosl............... (1).
Also the equation to the directrix is, by Art. 839,

If we solve the equations (1) and (2), we shall obtain the polar
coordinates of K.

But, by subtrachng (2) from (1), we have
=se -2 a+B\ e 9 %tB_T
0_sec 2 cos (0 ) t.e. 0 3 =73

. ¢+ﬂ
t.e. LKSX——2+ 9

so that SK bisects the exterior angle between SP and SQ.
Also, by equation (3) of Art. 344, we have the vectorial angle of T
equal to “—;ﬁ, ie. 2T8x=21B,

Hence LKST= LKSX~ ¢ Tsx=§.

Bx. 2. S is the focus and P and Q two points on a conic such that
the angle PSQ is constant and equal to 26 ; prove that

(1) the locus of the intersection of tangents at P and Q is a conic
section whose focus is S,

and (2) the line PQ always touches a conic whose focus is S.

(1) Let the vectorial angles of P and Q be respectively -+ & and
-3, where v is variable.

By equation (4) of Art. 342, the tangents at P and Q are therefore

%:coe(o--y-B)—eooso ...................... 1),

and é:oos(o--y+8)—eooao ...... [P (2).

If, between these two equations, we eliminate the variable quantity
v, we shall have the locus of the point of intersection of the two
tangents.

Subtracting (2) from (1), we have
608 (6 ~ v — 3)=cos (0 — y+3).
Hence, (since 3 is not zero) we have y=4.
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Substituting for v in (1), we have
i:oos d-ecosl,
r

t.e. L'-?—a—l esec&coso

Hence the required locus is a conic whose focus is S, whose latus
rectum is 2!sec 3, and whose ecoentricity is e sec 3.

It is therefore an ellipse, parabola, or hyperbola, according as
esecd is <=>1, i.c. according as cosd> = <e.

(2) The equation to PQ is, by equation (3) of Art. 342,

é=sec800!(0—7)-eooso.

i.e.

‘°‘;“’_—.oos(o-1)-eoosaeoso .................. ®).

Comparing, this with equation (4) of Art. 343, we see that it always
touches & conio whose latus rectum is 31008 3 and whose ecoentricity
is eocosd.

Also the direotrix is in each case the same as that of the original

conio. For both lmaand loo“areequalto-i.
esecd ecosd e

Bx. 8. A circle passes through the focus S of a conic and meets it
in four points whose distances from S are vy, 15,75, and r,. Prove that

1) rlr,r,r‘=£:—:f » where 2l and e are the latus rectum and

cccmtricity of the conic, and d is the diameter of the circle,
1.1, 1 _2
and (2) = + PRl &
Take the focus a8 pole, and the axis of the conic as initial line, so
that its equation is

l
;_l—eooso .............................. (1).

If the diameter of the circle, which passes through 8, be inclined
at an angle v to the axis, its equation is, by Art. 1

LT 1T (e S (2).

If, between (1) and (2), we eliminate 4, we shall have an equation
in r, whose roots are r,, 7,5, 73, and 7,.

From (1) we have cos 6= —,andhenoesmo—' /1- ('_)

and then (2) gives
r=dcos <y cos §+dsin v gin 0,
i.e. {er~doosy (r - 1) }?=d?siny [eH3 - (r - 1)7],
f.e. edrh—2edoosy . 18 +13 (d® + 2eld cos y — e3d3sind y) - 2ld%r 4 HU3=0.
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Hence, by Art. 2, we have
. ap
TATFTAT4= g woeeeeeesnnnsessisnnininians (8),
21d?
and T T Tt Tl = g e 4).
Dividing (4) by (8), we have

1.1 .1 1_2
Ty Ty g U

EXAMPLES. XXXIX.

1. In a parabola, prove that the length of a focal chord which is
inclined at 30° to the axis is four times the length of the latus-rectum.

The tangents at two points, P and Q, of a conic meet in T, and S
is the focus; prove that

2. if the conio be a parabola, then ST2=SP. 8Q.

. . 1 1 _1.,PSQ

3. if the conic be central, then gP—.—S*Q'—S—I;’—B-sz g
where b is the semi-minor axis.

4. The vectorial angle of T' is the semi-sum of the vectorial
angles of P and Q.

Hence, by reference to Art. 338, prove that, if P and Q be on
different branches of a hyperbola, then ST bisects the supplement of
the angle PSQ, and that in other cases, whatever be the conic, ST
bisects the angle PSQ.

5. A straight line drawn through the common foous S of a
number of conics meets them in the points P,, P,, ... ; on it is taken
& point @ such that the reciprocal of SQ is equal to the sum of the
reciproocals of SP,, SP,,.... Prove that the locus of @ is a conic
section whose focus is S, and shew that the reciprocal of its latus-
rectum is equal {o the sum of the reciprocals of the latera recta of the
given conios.

6. Prove that perpendicular focal chords of a rectangular hyper-
bola are equal.
7. PSP’ and QSQ’ are two perpendicular focal chords of a conic;

prove that PSSP + m is constant.
8. Shew that the length of any focal chord of a conia is a third
glrloggrﬁon&l to the transverse axis and the diameter parallel to the
ord.

9. If a straight line drawn through the focus S of a hyperbola,
parallel to an asymptote, meet the curve in P, prove that SP is one
quarter of the latus rectum.
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10. Prove that the equations é:l—eooso and é:—ccos‘—l
represent the same conic.

11. Two coniocs have a common focus; prove that two of their
common chords pass through the intersection of their directrices.

12. P is any point on a conic, whose focus is S, and a straight
line is drawn through S at a given angle with SP to meet the tangent
at P in T; prove that the ﬁl)ous of T is a conic whose focus and
directrix are the same as those of the original conic.

13. If a chord of a conio section subtend a constant angle 2a at the
focus, prove that the locus of the point where it meets the internal
bisector of the angle 2a is the conic section

loo'“:l—eooaaooso.

14. Two conic sections have a common focus about which one of
them is turned; prove that the common chord is always a tangent to
another conic, having the same focus, and whose ecoentricity is the
ratio of the eccentricities of the given conics,

15. Two ellipses have a common foous ; two radii vectores, one to
each ellipse, are drawn from the focus at right angles to one another
and tangents are drawn at their extremities; prove that these tangenta
meet on a fixed conic, and find when it is a parabola.

16. Prove that the sum of the distances from the focus of the
points in which a conio is intersected by any circle, whose ocentre is at
a fixed point on the transverse axis, is constant.

17. Shew that the equation to the circle circumseribing the triangle
formed by the three tangents to the parabola r=% drawn at
the points whose vectorial angles are a, 8, and v, is

_ e B Ygin (2FHBFY _
f—a0086020050020056028m( ) 0),

and henoe that it always passes through the focus.

18. If tangents be drawn to the same parabola at points whose
vectorial angles are a, 8, v, and 3, shew that the centres of the circles
circumseribing the four triangles formed by these four lines all lie on
the circle whose equation is

- % 0800 B coseo ¥ coseo _atBtyt
r= aooseo2oou02wsec2wm2m[a -——2-——‘,]

19. The circle circumscribing the triangle formed by three tangents
to a parabola is drawn; prove that the tangent to it at the g:!us
makes with the axis an angle equal to the sum of the angles made
with the axis by the three tangents.
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20. Shew that the equation to the circle, which passes through
the focus and touches the curve é:l - ecos 0 at the point 0=a, is

r(1-ecosa)’=1lcos (0 - a) — el 008 (0 — 2a).

21. A given circle, whose centre is on the axis of a parabola,
passes through the focus S and is cut in four points 4, B, C, and D by
any conic, of given latus-rectum, having S as focus and a tangent to
the parabola for directrix; prove that the sum of the distances of the
points 4, B, C, and D from S is constant.

22, Prove that the loocus of the vertices of all parabolas that can be
drawn touching a given circle of radius a and having a fixed point on

the circumference as focus is r=2aoos-§, the fixed point being the
pole and the diameter through it the initial line.

23. Two conio sections have the same focus and directrix. Shew
that any tangent from the outer curve to the inner one subtends a
constant angle at the focus.

24, Two equal ellipses, of eccentricity e, are placed with their
axes at right angles and they have one foous S in common ; if PQ be

a common tangent, shew that the angle PSQ is equal to 2 sin—! £

N2

25. Prove that the two conics é:l - ¢;co80 and l—;=1- €,c08(0 — a)
will touch one another, if

L3 (1 - eg?) +153 (1 - €,%) + 21, lye1¢5 OB a =0,

26. An ellipse and a hyperbola have the same focus S and
intersect in four real points, two on each branch of the hyperbola ; if
7, and ry be the distances from S of the two points of intersection on

nearer branch, and r; and rtebe those of the two points on the

further branch, and if ! and 7 the semi-latera-recta of the two
conics, prove that

(l+l’)(1 +:—2>+(l—l') (rl,+l)=4‘

’; Ts
[Make use of Art. 338.]
27. If the normals at three points of the parabola r=a cosec’g,

whose vectorial angles are a, 8, and y, meet in a point whose vectorial
angle is 3, prove that 26=a+8+vy - .



CHAPTER XV.

GENERAL EQUATION OF THE SECOND DEGREE,
TRACING OF CURVES.

348. Particular cases of Conic Sections. The
general definition of a Conic Section in Art. 196 was that
it is the locus of a point P which moves so that its distance
from a given point § is in a constant ratio to its perpen-
dicular distance PM from a given straight line ZXK.

‘When S does not lie on the straight line ZX, we have
found that the locus is an ellipse, a parabola, or a hyperbola
according as the eccentricity ¢ is <= or > 1.

The Circle is a sub-case of the Ellipse. For the
equation of Art. 139 is the same as the equation (6) of
Art. 247 when d*=a? i.e. when e¢=0. In this case

CS=0, and SZ=§_as=w. The Circle is therefore a

Conic Section, whose eccentricity is zero, and whose direc-
trix is at an infinite distance.

Next, let S lie on the straight line ZK, so that S and Z
coincide.

In this case, since

SP=e¢.PHM,
we have
. PM 1
smPSM_ﬁ- ==

If e>1, then P lies on one or
other of the two straight lines SU
and SU’ inclined to XK' at an angle

sin-’ (%) .
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If e=1, then PSM is a right angle, and the locus
becomes two coincident straight lines coinciding with SX,

If e<1, the « PSM is imaginary, and the locus consists
of two imaginary straight lines.

If, again, both KXK' and § be at infinity and § be on
KK', the lines SU and SU’ of the previous figure will be
two straight lines meeting at infinity, 4.e. will be two
parallel straight lines.

Finally, it may happen that the axes of an ellipse may
both be zero, so that it reduces to a point.

Under the head of a conic section we must therefore
include :

(1) An Ellipse (including a circle and a point).
(2) A Parabola.
(3) A Hyperbola.
(4) Two straight lines, real or imaginary, inter-
secting, coincident, or parallel.
349. 7o shew that the general equation of the second

degree
ax® + 2hay + by? + 292 + 2fy + ¢=0......... (1)
always represents & conic section.
Let the axes of coordinates be turned through an angle
0, so that, as in Art. 129, we substitute for « and y the
quantities x cos 6—ysinf and «sin 6+ycosf respec-
tively. )
The equation (1) then becomes
a (z cos 0 — y sin 6)* + 2k ( cos § — y sin 6) (x sin 6 + y cos 6)
-+ b (x8in 0 + y cos 6)* + 2¢ (x cos § — y sin )
+ 2f (xsin 0 +y cos ) + ¢ =0,
i.e.  2*(acos®@ + 2h cos 0 sin 6 + b sin? §)
+ 2wy {h (cos® 6 — sin® 6) — (a — b) cos O sin 6}
+ g (@ sin? @ — 24 cos 0 sin 0 + b cos® 0) + 2x (g cos 6 + f'sin 6)
+2y(fcosf—-gsinb)+ec=0............ (2).
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Now choose the angle 6 so that the coefficient of xy in
this equation may vanish,
s.e. 80 that h (cos? 6 — sin?@) = (& — b) sin 0 cos 6,
e , 2h cos 260 = (a — b) sin 26,
%.e. 80 that tan 26 = -%b

‘Whatever be the values of a, b, and 4, there is always
a value of 6 satisfying this equa.tlon and such that it lies
between — 45° and + 45°. The values of sin § and cos 6 are
therefore known.

On substituting their values in (2), let it become
A2+ Byt + 2Gx+ 2Fy +¢=0............(3).
First, let neither 4 nor B be zero.
The equation (3) may then be written in the form
G\ R &
A Z+Z> +B(y+ B = Vi +—E—c.
Transform the origin to the point (— g, —IE‘).

The equation becomes

4 Byp=S oo K (eay) ..o ),
: 2 g 5
6. ? + Z =1 (()).
4 B
K v.¢
If — 1 and — 3 be both positive, the equa.tlon represents an
ellipse. (Art. 247.)

If § and % be one positive and the other negative, it
represents a hyperbola (Art. 295). If they be both
negative, the locus is an imaginary ellipse.

If K be zero, then (4) represents two straight lines,
which are real or imaginary according as 4 and B have
opposite or the same signs.
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Secondly, let either 4 or B be zero, and let it be 4.
Then (3) can be written in the form

I
B(y+ 1—9) +2G'[a:+ ﬁ_ﬂ?—é]=o'

Transform the origin to the point whose coordinates

are
¢ m F
(-2*ame - F) '
This equation then becomes
By + 2@z =
t.e. yP=- 2—(-; x,

which represents a parabola. (Art. 197.)

If, in addition to 4 being zero, we also have G zero, the
equation (3) becomes
By*+2Fy +¢=0,

z.e .,+£_.., I—“—f-
" I*"BTNEBETR

and this represents two parallel straight lines, real or
imaginary.

Thus in every case the general equation represents one
of the conic sections enumerated in Art. 348.

350. Centre of a Conic Section. Def. The
centre of a conic section is a point such that all chords of
the conic which pass through it are bisected there.

» When the equation to the conic is in the form
ax® + 2hay + by +¢=0.oeeennnnnn.n. 1),
the origin is the centre.
For let («/, ') be any point on (1), so that we have
ax®+ 2ha’y’ + by + =0 .oeeiieriieiinnn (2).
This equation may be written in the form
a(-2)Y+2h(—) (-y)+b(-y) +c=0,
and hence shews that the point (—«/, —y’) also lies on (1).
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But the points (2, ¥') and (-, —y') lie on the same
straight line through the origin, and are at equal distances
from the origin.

The chord of the conic which passes through the origin
and any point (', /) of the curve is therefore bisected at

the origin.
The origin is therefore the centre.

851. When the equation to the conic is given in the

form
ax® + 2hay + by + 29z + 2fy +¢=0......... 1),
the origin is the centre only when both fand g are zero.
For, if the origin be the centre, then corresponding
to each point («', ¥') on (1), there must be also a point
(—«, —y) lying on the curve.
Hence we must have
ax’? + 2ha’y’ + by + 29’ + 2fy’ +¢=0...... (2),
and ax’® + 2ha’y’ + by — 292’ - 2fy’ +¢c=0...... (3).
Subtracting (3) from (2), we have
9% +fy =0.
This relation is to be true for all the points (', ¥')

which lie on the curve (1). But this can only be the case
when g=0 and f=0.

352. 7o obtain the coordinates of the centre of the
conic given by the gemeral equation, and to obtain the
equation to the curve referred to axes through the cemire
parallel to the original axes.

Transform the origin to the point (%, ), so that for =
and y we have to substitute #+#& and y+¥. The equation
then becomes

a(@+&*+2h(x+&)(y+9)+b(y+9)+29 (x+)
+2f(y+9) +e=0,
te  ax®+ 2hawy + by® + 22 (ak + hy + g) + 2y (& + bF +.f)
+ ad@® + 2hag + b + 298+ &ff +¢=0 ......... 2).
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If the point (£ ) be the centre of the conic section, the
coefficients of « and y in the equation (2) must vanish, so

that we have
afb+hj+g=0..ccccciil 3),
and A4 b+ f =0, 4).
Solving (3) and (4), we have, in general,
@:%, and g:%{ .......... (5).
- With these values the constant term in (2)
= a& + 2hEf + bf + 29% + 27 + ¢
=&(ak+hg+9)+GhE+bg+f)+ g8+ fy+c
=BRFITHC (6),

by equations (3) and (4),
— —_ — 2
- oo+ 2/gh 5 '_"_f;, by* — ok , by equations (5),

_ A
Tab-A’
where A is the discriminant of the given general equation
(Art. 118).
The equation (2) can therefore be written in the form
A
| am'+2hwy+by’+ab_h,=0.
This is the required equation referred to the new axes
through the centre.

Bx. Find the centre of the conic section
2% - by - 8y —x - 4y +6=0,
and its equation when transformed to the centre.
The centre is given by the equations 27 — §7 — 4=0, and
~§Z-87-2=0, so that = -4, and §=-4§.
The equation referred to the centre is then
223 - bzy - 8y?+- ¢/ =0,
where =-3.2-2.+6=3+§+6=T7. (Art. 852.)
The required equation is thus
2z* - By - 8y2+ T7=0.
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. 353. Sometimes the equations (3) and (4) of the last
article do not give suitable values for & and 7.

For, if ab—A’ be zero, the values of & and 7 in (5) are
both infinite. When ab - A’ is zero, the conic section is a
parabola.

The centre of a parabola is therefore at infinity.

Again, i %: ;—: = ;—7., the result (5) of the last article is
of the form § and the equations (3) and (4) reduce to the
same equation, viz., N

at+hy+g=0.

We then have only one equation to determine the

centre, and there is therefore an infinite number of centres
all lying on the straight line

ax+hy+g=0.

In this case the conic section consists of a pair of
parallel straight lines, both parallel to the line of centres.

354. The student who is acquainted with the Dif-
ferential Calculus will observe, from equations (3) and (4)
of Art. 3562, that the coordinates of the centre satisfy the
equations that are obtained by differentiating, with regaid
to « and y, the original equation of the conic section.

Tt will also be observed that the coefficients of @, 7, and
unity in the equations (3), (4), and (6) of Art. 352 are the
quantities (in the order in which they occur) which make
up the determinant of Art. 118.

This determinant being easy to write down, the student
may thence recollect the equations for the centre and the
value of ¢.

The reason why this relation holds will appear from the
next article.

855. Bx. Find the condition that the general equation of the
second degree may represent two straight lines.

The centre (%, 7) of the conic is given by

and RN B L) R (2).
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Also, if it be transformed to the centre as origin, the equation

becomes
azd+ Bhzy + bYP+ ' =0..orrerr (3),
where =gZ+fY+ec.
Now the equation (3) represents two straight lines if ¢’ be zero,
i.e if PEHST+e=0.ccceiiiiiniiiinnniinnn. (4).

The equation therefore represents two straight lines if the relations
(1), (2), and (4) be simultaneously true.

Eliminating the quantities Z and ¥ from these equations, we have,
by Art. 12,

| ay hy g
kb f |=
9 fic
This is the condition found in Art. 118.

356. T find the equation to the asymptotes of the conic
section given by the general equation of the second degree.
Let the equation be
ax?® + 2hwy + by® + 2g9x + 2fy + ¢=0.........(1).
Since the equation to the asymptotes has been shewn to
differ from the equation to the curve only in its constant
term, the required equation must be

ax® + 2hay + by + 29+ 2fy +c + A =0......(2).
Also (2) is to be a pair of straight lines.
Hence
ab(c+ ) +2fgh—af*—bg*—(c+ M) A*=0. (Art. 116.)
3 3 _ 73
Therefore x____abc ha 2/'2]’;1,‘_#,&, by* - ch =—abé s
The required equation to the asymptotes is therefore

az? + 2y + by + 2gx+2fy+c_ab‘ih;=o...(2).

Cor. Since the equation to the hyperbola, which is
conjugate to a given hyperbola, differs as much from the
equation to the common asymptotes as the original equation
does, it follows that the equation to the hyperbola, which is
conjugate to the hyperbola (1), is

ax® + 2hxy + by® + 29z + 2fy + c— 2

A
m:&
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387. To determine by an examination of the general
equation what kind of conic ssction it represents.

[On applying the method of Art. 313 to the ellipse and
parabola, it would be found that the asymptotes of the
ellipse are imaginary, and that a parabola only has one
asymptote, which is at an infinite distance and perpen-
dicular to its axis.]

The straight lines ax® + 2hxy + by*=0............... (1)

are parallel to the lines (2) of the last article, and hence
represent straight lines parallel to the asymptotes.

Now the equation (1) represents real, coincident, or
imaginary straight lines according as A® is >= or <ab,
t.e. the asymptotes are real, coincident, or imaginary,
according as 4% > = or <ab, i.e. the conic section is a hyper-
bola, parabola, or ellipse, according as A* > = or < ab.

Again, the lines (1) are at right angles, s.e. the curve is
a rectangular hyperbola, if a + 6=0.

Also, by Art. 143, the general equation represents a
circle if a =56, and A=0.

Finally, by Art. 116, the equation represents a pair of
straight lines if A = 0; also these straight lines are parallel
g the terms of the second degree form a perfect square, t.e.
i k= ab.

358. The results for the general equation
ax’® + 2hxy + by* + 292+ 2fy + ¢ =0
are collected in the following table, the axes of coordinates

being rectangular.
Curve. Condition.
Ellipse. k3 <ab.
Parabola. h? = ab.
Hyperbola. k3> ab.
Circle. a=b5, and A= Q.
Rectangular hyperbola. - a+b=0.
Two straight lines, real or A=0,
imaginary. e
abe+2fgh — af*—bg* — ch?=0.
Two parallel straight lines. A=0, and A*=ab.
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If the axes of coordinates be obhque. the lines (1) of Art. 356 are
at right angles if a+b-3hcos w=0 (Art. 93); so that the conic
section is a rectangular hyperbola if a + b — '3h 008 w=0.

Also, by Art. 175, the conic section is a circle if b=a and
h=a 008 w.

The conditions for the other cases in the previous artiole are the
same for both oblique and rectangular axes.

EXAMPLES. XL.

What conics do the following equations represent? When
possible, find their centres, and also their equations referred to the
centre.

1. 1222 237y + 10y® - 26z + 26y = 14.
2. 1323-18zy+ 3Ty + 2z + 14y - 2=0.
8. ¥2-2/3zy+32%+6z-4y+5=0.
4, 222-T3zy+23y? - 4z — 28y — 48 =0.
5. 6z%-bxy - 6y*+14x+ by +4=0.
6. 3a?-8zy—B8y?+10z 13y +8=0.

Find the asymptotes of the following hyperbolas and also the
equations to their conjugate hyperbolas.

7. 823+10zy -3y -2z +4y=2. 8. y?-ay-2?-6y+z-6=0.
9. 5523 - 120xy +20y3+ 64z — 48y =0.

10. 192%+24zy +y? - 22x - 6y =0.

11. If (z, 7) be the centre of the conic section

S (@, y) =az?+ 2hay + by? + 2gz + 2fy + ¢ =0,
prove that the equation to the asymptotes is f (2, y)=f (%, §).

If ¢ be a variable quantity, find the locus of the point (v, y) when

12, z=a (H%) and y =a (t—%).

13. x=at+bt? and y=>bt+ats.

14, z=14t+0 and y=1-t+83

I 6 be a variable angle, find the locus of the point (z, ) when
15. z=atan(0+a) and y=>tan (6 +B).

16. z=acos(f+a) and y=> cos (6 +B).

‘What are represented by the equations

17. (z-y)*+(z-a)*=0. 18. zy+d=a(z+y).
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19, #-y*=(y-a)(=*-¥’).
20. @*+y*-ay(z+y)+at(y-2)=0. 2l (a*-a?)’-y'=0.
22, #B+yd+(z+y) (zy - ax-ay)=0. 23. 2¥+azy+y?=0.
24. (r cos 8- a)(r - a cos §)=0. 25. rsin?0=2acos 6.
26. r+}=sooao+sino. 27. ;=l+coso+.,/35ino.
28, r(4 -8sin?6)=8a cos 6.
389. 7o trace the parabola given by the general equa-
tion of the second degree
ax® + 2hay + by? + 29z + 2fy + ¢c=0......... (1),
and to find 1ts latus rectum.
First Method. Since the curve is a parabola we

have A*=ab, so that the terms of the second degree form
a perfect square.

Put then a=a? and b=g% so that hA=afB, and the
equation (1) becomes

(az+ By)y + 292+ Uy +c=0....cu...... 2).
Let the direction of the axes be changed so that the
a

B

straight line ax+ By =0, t.e. y=——-, may be the new

axis of X,

E3

We have therefore to turn the axes through an angle 6

such that tan 6=— %, and therefore
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For = we have to substitute

Xcos@— Ysiné, t.e. BX+GY,
Na?+ gt
and for y the quantity .
Xsin6+ Yoo, ie. —2XTBY  xrp 199)
Vai+ B

For ax + By we therefore substitute ¥ «/(a?+ ).
The equation (") then becomes

7 (a? +,B’)+J [g(BX+aY)+f(/3Y aX)]+¢=0,
. ay+ﬁf x S-By _ ¢
1.6 Y2+ 2Y(a +ﬁ’)‘ (a’-i-ﬁ‘)‘ a,+ﬁg!
ie (T-Ky=2 (“f Box-m.... 3),
where —— a9+/3f
he ; KB (g’+ﬁ')'"""""""""'"<4)’
oY ~P g_ge._ S
and 2(a’+ﬁ’)’ H=K ad+ g’
. N+ B T (ag+Bf)
t.e =3 (o= By) @ (5).
The equatlon (3) represents a parabola whose latus
rectum is 2( _:'8“]!, whose axis is parallel to the new axis

of X, and whose vertex referred to the new axes is the
point (H, K).

360. Equation of the axis, and coordinates of the
vertex, referred to the original axes.

Since the axis of the curve is parallel to the new axis of
- X, it makes an angle 6 with the old axis of x, and hence
the perpendicular on it from the origin makes an angle
90° + 6.

Also the length of this perpendicular is X.
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The equation to the axis of the parabola is therefore
x co8 (90° + 0) + y&in (90° + ) = K,

i.e. —28inf + ycosf =K,
. —~—ai 09+
i.e. az+py=KJa'+p'=-a’{+§{.........(e).

Again, the vertex is the point in which the axis (6)
meets the curve (2).

‘We have therefore to solve (6) and (2), i.e. (6) and

+ 2
(-(ﬂ;%?ﬁ 29z +2fy+e=0...ocun.... (7).
rghe m‘lt}‘)l:hOf (6!)'t:nd ) therefore gives the required
coordinates O e vertex

361. It was proved in Art. 224 that if PV be a
diameter of the parabola and @V the ordinate to it drawn
through any point @ of the curve, so that @V is parallel to
the tangent at P, and if @ be the angle between the diameter
PV and the tangent at P, then

QV*=4acosec?d. PV ................ 1).
If QL be perpendicular to PV and @L’ be perpendicular
to the tangent at P, we have
QL=QVsinb, and QL =PV sin,
so that (1) is QL2=4acosecld.QL'.
Hence the square of the perpendicular distance of any
point @ on the parabola from any diameter varies as the

rpendicular distance of @ from the tangent at the end of
the diameter.

Hence, if Az+By+C=0 be the equation of any
diameter and A'z+By+C’'=0 be the equation of the
tangent at its end, the equation to the parabola is

(Adz+ By +CP=A(A'c+ By+(C)......... (2),
where A is some constant.

Conversely, if the equation to a parabola can be reduced
to the form (2), then

Az 4+ By+C=0....ocovrerernnne. 3)
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is a diameter of the parabola and the axis of the parabola is
parallel to (3).
‘We shall apply’this property in the following article.
362. 7o tracs the parabola given by the general equa-
tion of the second degree
az? + 2hay + by* + 29 + 2fy +¢=0......... (1).

Second Method. Since the’ curve is a parabola, the

terms of the second degree must form a perfect square
and A*= ab.

Put then a=a® and b=g% so that A=apB, and the
equation (1) becomes
(e + ByP=— (292 + 2fy +¢)..ouevuun.nn (2).

As in the last article the straight line ax+ By =01is a
diameter, and the axis of the parabola is therefore parallel
to it, and so its equation is of the form

ar+ By +A=0.cciiniinnnn.n. (3)-
The equation (2) may therefore be written
(ax + By + A)*=— (29 + 2fy + c) + A* + 2\ (ax + By)
=22(Aa—-g)+ 2y (BA=f)+ A —c ....... (4).
Choose A 80 that the straight lines
ax+By+A=0.......oiinn. (5)
and 22 (Aa—g) + 2y (BA—f) + N =c=0....... (6)
are at right angles, ¢.e. so that
a(a—g)+B(BA=f)=0,

. +

i.¢. 8o that A= %{_'_ ;’g ....................... (7).
The lines (5) and (6) are now, by the last article, a

diameter and a tangent at its extremity ; also, since they

are at right angles, they must be the axis and the tangent
at the vertex.
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The equation (4) may now, by (7), be written
9 (af —
{az + By + A} = _@f_ﬁ_g)[pz_.ayw]’

ot + 3
where K=y ¥
G [mrBUeN 2B po-uyis
) N/ m’ o (@ + Bl)! “/F"'_B’ ’
P20 iy
@+ )

where PN is the perpendicular from any point P of the
curve on the axis, and 4 is the vertex.

Hence the axis and tangent at the vertex are the lines
(5) and (6), where A has the value (7), and the latus rectum

=9 af — By .
(@+p)}
8638. Bx. Trace the parabola
922 — 24zy + 16y% - 18z - 101y + 19=0.
The equation is
(8z-4y)3-182-101y +19=0 .................. (2).

Pirst Method. Take 3z — 4y=0 as the new axis of z, i.c. turn
the axes through an angle 6, where tan 6=%, and therefore sin 6=}
and cos =4%.

4X-3Y
?

For z we therefore substitute X cosd— Ysiné, i.e. 3 for
y we put Xsiné+ Ycos o, i.c. ax—;—éz, and hence for 3z -4y the

quantity - 5Y.
The equation (1) therefore becomes
2572} [72X - 54Y] - } [303X +404Y]+19=0,
ie. 26Y3 - 75X -T0Y+19=0.............c....... 2).
This is the equation to the curve referred to the axes OX and OY.
But (2) can be written in the form
y2- !7§¥= 83X - 33,

ie. (Y-32=3X-32+48=3 (X+1).
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Take a point 4 whose coordinates referred to OX and OY are -}
and §, and draw AL and A M parallel to OX and OY respectively.

Referred to AL and AM the equation to the parabola is ¥?=3X.

It is therefore a parabola, whose vertex is 4, whose latus rectum is 3,
and whose axis is AL.

Slecond Method. The equation (1) can be written
3z -4y +N)?=(6A+18)z+y (101 -8\)+A3-19 ...... (8)-
Choose \ 8o that the straight lines
8z -4y +2=0
and (6A+18) z+y (101 -8\) +A?1-19=0
may be at right angles.
Hence \ is given by
8 (6A+18)—4 (101 - 8\) =0 (Art. 69),
and therefore A=1.
The equation (3) then becomes
(83— 4y +T)3=15 (4z + 3y +92),
ie. 8z-4y+ 7) 4.1: + 3y +2

.................. ().
Let AL be the straight hne
B2 =4y +T=0 .coocveeirrircrennnn. (5),
and AM the straight line 42438y +2=0...........ccccccoevneeennnnn(6).
These are at right angles.

If P be any point on the parabola and PN be perpendicular to
AL, the equation (4) gives PN*=3, 4N.

Hence, as in the first method, we have the parabola.
The vertex is found by solving (5) and (6) and is therefore the
point (-, 4

L. 22
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In drawing curves it is often advisable, as a verification, to find
whether they cut the original axes of coordinates,

Thus the points in which the given parabola cuts the axis of =
are found by putting y=0 in the original equation. The resulting
equation is 9z% - 18z + 19=0, which has imaginary roots.

The parabola does not therefore meet Oz.

Similarly it meets Oy in points given by 16y2- 101y +19=0, the
roots of which are nearly 64 and .

The values of 0Q and 0Q’ should therefore be nearly % and 6.

364. 7o find the direction and magnitude of the axes
of the central conic section

ar’ + 2hay + by =1.......cooeeel. (.

First Method. We know that, when the equatic 1 w0
a central conic section has no term containing xy and the
axes are rectangular, the axes of coordinates are the axes of
the curve.

Now in Art. 349 we shewed that, to get rid of th:: term
involving xy, we must turn the axes through an angle 6
given by

tan 20 = _2h_ '2)
ppy SITTIERIIR AR 2).

The axes of the curve are therefore inclined to th:; axes
of coordinates at an angle 6 given by (2).

Now (2) can be written

2 tan 0 2r 1
T—tar’d 2=~ 1 "7
S tan?@+ 2Atan6-1=0............. {3).

This, being a quadratic equation, gives two values 1or 6,
which differ by a right angle, since the product of the two
values of tan 6 is — 1. Let these values be 6, and 6,, which
are therefore the inclinations of the required axes of the
curve to the axis of .

Again, in polar coordinates, equation (1) may be written
_ 7*(acos® 0 + 2k cos O sin 0 + b sin” )= 1 = cos* 6 + sin” 6,
t.e.

e cos?§ +sin? 0 a 1 + tan® 0
acos?@+2hcos@sin @ +bsin*0 ~ a+ 2k tan 6+ b tan®6
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If in (4) we substitute either value of tan @ derived
from (3) we obtain the length of the corresponding
semi-axis.

The directions and magnitudes of the axes are therefore
both found.

Second Method. The directions of the axes of the
conic are, as in the first method, given by

tan 20 = 2k .
a-b
‘When referred to the axes of the conic section as the
axes of coordinates, let the equation become
£ g
;ﬁ + FJ =1
Since the equation (1) has become equation (5) by a

change of axes without a change of origin, we have, by
Art. 135,

PR LY (6),
and &% Y ).

These two equations easily determine the semi-axes o
and B. [For if from the square of (6) we subtract four
8

. . 1 1 1 1
times equation (7) we have (;, - F,) , and hence o F;
hence by (6) we get },and /%‘:I

The difficulty of this method lies in the fact that we
cannot always easily determine to which direction for an
axis the value a belongs and to which the value 8.

If the original axes be inclined at an angle w, the equa-
tions (6) and (7) are, by Art. 137,
1 1 a+b-2hcosow
="t F‘ T ’
1 ab-#

df sinfe

and

22—2
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Cor. 1. The reciprocals of the squares of the semi-
axes are, by (6) and (7), the roots of the equation

Z'—(a+b)Z+ab-k=0.

Cor. 2. From equation (4) we have
T

Nab— R

Area of an ellipse = 7ef3 =

865. Bx.1l. Trace the curve
1423 - day + 11y? - 44 - 58y + T1=0............... (1).

Since (- 2)®— 14.11 is negative, the curve is an ellipse. [Art.858.]
By Art. 852 the centre (Z, y) of the curve is given by the equations

147 -2y -22=0, and -2Z+1135-29=0.
Hence =2, and §=3.
The equation referred to parallel axes through the centre is

therefore 1422 - 4oy + 113+ ¢’ =0,
where ¢'= - 227 - 297 + T1 = - 60,
8o that the equation is
1423 - 4y +11y3=60......c...ceorennnnnnnn. (2).
The directions of the axes are given by
2h -4
tan= 5= -n= "%
2tan 6

8o that l:t;a"ér'_%’
and hence 2tan?6-3tan 0 -2=0.

Therefore tan 6, =32, and tan 6,= - }.
Referred to polar coordinates the equation (2) is
73(14 cos? 6 — 4 cos 0 sin 0 + 11 sin? §) = 60 (cos? 6 + sin? 0),

. _ 1+tan3d
Le. =60 { Ttan o+ 11l tan? 0"
144
i 2 e
When tan 6, =2, r, _60x14_8+44_6.
1+%

‘When “n0,= —%, 7‘22=60X m:‘.
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The lengths of the semi-axes are therefore ,/6 and 2.

Hence, to draw the curve,
take the point C, whose coordi-
nates are (2, 3).

Through it draw 4’CA in-
clined at an angle tan-! 2 to the
axis of # and mark oft

4'C=CA=,/6.

Draw BCB’ at right angles
to ACA' and take B'C=CB=2.

The required ellipse has 44’
and BB’ as its axes.

It would be found, as a veri-
fication, that the curve does not meet the original axis of z, and
that it meets the axis of y at distances from the origin equal to
about 2 and 3} respectively.

O M X

Bx. 2. Trace the curve

2%-8zy +y?+ 102 - 10y +21=0....c....c...... .
Since (-‘2—3)’ 1.1 s positive, the curve is a hyperbola.
[Art. 868.]
The centre (Z, ) is given by
_ 3
z - §y+5=0,
and --2—3§+y—5=0,
80 that Z=-2, and §=2.

The equation to the curve, referred to parallel axes through the
centre, is then
2~ 8zy +y3+6(-2) - 6x2+21=0,

i.e. aB-Bzy+yt= -1, veeeenn(2).
The direction of the axes is given by
2h -3
tan 20:(?—-5 =1 _—i=w ,
so that 20=90° or 270°,
and hence 6,=45° and 0,=135°,

The equation (2) in polar coordinates is
72 (cos? @ — 8 cos 0 8in 0 + gin? 6) = — (sin? 0+ c0s?6),
1+tan?é@

be. M= - Sten 6+ tanie’
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When 6,=45° r2= _i.:2—+l-=2, so that 1’1=~/2..
2 -2 -9
- o = " = = —_— .
When 0,=135°, rg= 173715 so that r, \/ 5

To construct the curve take the point C whose coordinates are —2
and 2. Through C draw a straight line 4CA4’ inclined at 45° to the
axis of z and mark off A’'C=C4=,/2.

Also through 4 draw a straight line KAK’ perpendicular to C4
and take AK=K’A=./}. By Art. 815, CK and CK’ are then the
asymptotes. ‘

The curve is therefore & hyperbola whose centre is C, whose
transverse axis is 4’4, and whose asymptotes are CK and CK’.

o

On putting z=0 it will be found that the curve meets the axis of
y where y=38 or 7, and, on putting y=0; that it meets the axis of z
where z=-3 or - 7.

Hence 0Q=38, 0Q'=T, bR:s, and OR'=T1.

 366. To find the eccentricity of the central conic section

First, let 4 —ab be negative, so that the curve is
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an ellipse, and let the equation to the ellipse, referred to
its axes, be

f;+ 4"/—’=l.

o g
By the theory of Invariants (Art. 135) we have

1 1
a—., + F =@+beeeiiiiiii, (2),
1
and s =ab-M...coiiiiiiii. (3).
Also, if e be the eccentricity, we have, if a be> S,
a?—
et = a,B’ .
L8 _a-p
2~ a+
But, from (2) and (3), we have

a’+ﬁ"=a%--‘i—b,;il and a’ﬁ":Ei—Z—;.
Hence I
o ST AT 4 YT AR
L ¢ Ne-btpe @).
9 ¢ a+b

This equation at once gives e,

Secondly, let 2*— ab be positive, so that the curve is
a hyp;:bola., and let the equation referred to its principal
axes

@_¥_,
a?d B
8o that in this case
;13—'§1-n=a+b,and —;ls—a—ab — W=— (W —ab).
i_g._ 8+b 2 1
Hence o?—g° h_abanda b
V= 4R

so that o+ f=+ /(@ — Y+ 4=+ g
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In this case, if 6 be the eccentricity, we have ’

e’=a: ':B’
. P g _N@-by+n
ie. = _‘tg (@ a+)b ......... (5).

This equation gives ¢
In each case we see that e is a root of the equation

&\ (a—b)+4h
(2—e’) D
t.e. of the equation
et (ab— %) + {(a—b)* + 4A°} (e — 1) = 0.

867. To obtain the foci of the central conic
ax® + 2hay + by = 1.
Let the direction of the axes of the conic be\obta.med as
in Art. 364, and let 6, be the inclination of the major axis

in the case of the elhpse, and the transverse axis m\the case
of the hyperbola, to the axis of .

Let 7? be the square of the radius correspondmg to 0,
and let 7,* be the square of the radius corresponding to: the
perpendicular direction. [In the case of the hyperbola 73"
will be a negative quantity.]

The distance of the focus from the centre is a/r —
(Arts. 247 and 295). One focus will therefore be the point

(Jr,' —1gicos ), :Jrl’ —r,38in §)),
and the other will be

(~Wri—ricosd, — Nri—risiné).

Bx. Find the foci of the ellipse traced in Art. 365,
. 2 1

Herettmo,_a,I;otlmtnnol_.«T5 :73
Also r)2=6, and r,¥=4, so that \/r,7—7,3=,/2.
The coordinates of the foci referred to axes through C are therefore

(2 (55.-30)

and 0os 6, =
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Their coordinates referred to the original axes OX and OY are
IV IR V. NNV, I ¥
z=!=75-, ES Jﬁ)’ 1.e.(2d=~/5, LES ~/5)'

368. The method of obtaining the coordinates of the

focus of a parabola given by the general equation may be
exemplified by taking the example of Art. 363.

Here it was shewn that the latus rectum is equal to 3,
so that, if S be the focus, 48 is §.

It was also shewn that the coordinates of 4 referred to
OX and OY are — % and 1.

The coordinates of S referred to the same axes are
—%+%and §, d.e. Jyand I,
Its coordinates referred to the original axes are therefore
spcos @ —Fsin 6 and S sin 0+ % cos b,

> 7 4 _'1 7 38 7 4
v.e -5~ % -} and 5. 3+ 4.4,
- 14 188
e 3t and 153

In Art. 393 equations will be found to give the foci of
any conic section directly, so that the conic need not first
be traced.

869. Ex. 1. Trace the curve

3(3z-2y+4)2+2(2z+3y-52=39 .............. 1).
The equation may be written
8z - 2y +4\? 2z+8y -5\%_
a( s +2( L ) =B (@)

Now the straight lines 8z-2y+4=0 and 32+3y-5=0 are at
right angles, Let them be CM and
CN, intersecting in C which is the

point ( - l’l” R)'

If P be any point on the curve
and PM and PN the perpendiculars
upon these lines, the lengths of PM
and PN are

8z-2y+4 2z+3y-6
Jis 4 — -

Henoce equation (2) states that

3PM*+2PN3=8,

PM? PN?
_l"+ T= 1.
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The locus of P is therefore an ellipse whose gemi-axes measured
along CM and CN are /§ and 1 respectively.
Bx. 2. What is represented by the equation
(a7~ a®P+ (3 - a%)?=at?
The equation may be written in the form
28+ yt - 202 (22 + y?) + a* =0,

ie. (a3 +y?)% - 2a? (z3+ !I’) +at=2z%2,
i.e. (23493 - a3)3 - (/20y)2=0,
e, (22 + /22y +° - a¥) (- /22y +y7 - a9 =0.

The locus therefore consists of the two ellipses
23+4/22y +y% - a?=0, and 2?-,/2zy+y®-a?=0.
These ellipses are equal and their semi-axes would be found to be
an/2+4/2 and aN/2-2.

The major axis of the first is inclined at an angle of 135° to the
axis of 2, and that of the second at an angle of 45°.

EXAMPLES. XLI

Trace the parabolas
1. (z-4y)'=5ly. 2. (z-y)'=z+y+1
3. (52 -12y)3=2az+29ay +a?
4. (4z+3y+16P=5(3z—4y).
5. 162%+24zy+ 9y~ bz - 10y +1=0.
6. 9z2+24zy+16y2 -4y —2+7=0.
7. 14422 - 1202y + 35y%+ 619z — 272y + 668 =0, and find its focus.
8. 162% - 24zy 4 9y®+ 32z +86y — 39=0.
9. 472-4zy+y?-12z+6y+9=0.
Find the position and magnitude of the axes of the conics
10. 1207 122y + Ty?=48. 11. 82%+2zy+3y?=8.
12, 2®-ay-6y?=6.
Trace the following central conics.
13. % -2zycos2a+y3=2a2 14. z%-3aycosec2a+y?=al.
15, zy=a(z+y) 18. zy-y'=d’
17. y*-22y+2:°+22-29=0. ° 18, 2+ay+y'+z+y=1.
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19. 242+ 3xy -2y*-Tx+y-2=0.
20. 40z2+ 36xy + 26y? ~ 196z — 122y + 205 =0,
21. 9z 82xy +9y?+ 60z + 10y =643.
22, 23-zy+2y2-2az - 6ay +7a%=0.
28, 102? - 48zy - 10y?+ 38« + 44y - 53 =0.
24, 4x2+2Txy+36y3- 142 - 81y - 6=0,
25. (3z-4y+a)(dx+3y+a)=a.
26, 3(2z-3y+4)2+2(3z+2y-5p="T8.
27. 2(8z-4y+5)2-3(4x+ 8y - 10)3=150.
Find the products of the semi-axes of the eonics
28. y*-4oy+523=2.  29. 4(3z+4y-T)*+8 4z -3y +9)*=3,
80. 1123+416zy —y?- 70z — 40y +82=0.
Find the foci and the eccentricity of the conics
31. 2?-38zy+4dax=32a% 32. 4zy-3823—-2ay=0.
38. 527+ 6zy+5y'+ 12244y +6=0.
34, »*+4ay+y?-22+2y-6=0.
35. Shew that the latus rectum of the parabola
(a®+ b?) (23+ y?) = (bx + ay — ab)?
is 2ab -+ AJa¥+ b5
36. Prove that the lengths of the semi-axes of the conic
az2+ 2hzy +ay?=d

a+h V a-n

regpectively, and that their equation is 22— y2=0.
87. Prove that the squares of the semi-axes of the conic
ax?+ 2hay + by + 292 + 2fy + ¢=0
are 2A-+{(ab - 1%) (a+b+ \/(a - 0)P+41A)},
where A is the discriminant.

38. If \ be a variable parameter, prove that the locus of the
vertices of the hyperbolas given by the equation 22-y?+N\zy=a? is
the curve (224 y?)3=a? (23 - y2).

39. If the point (at)?, 2at,) on the parabola y2=4ax be called the

point ¢,, prove that the axis of the second parabola through the four
points ¢, t,, t;, and ¢, makes with the axis of the first an angle

Prove also that if two parabolas meet in four points the distances
of the centroid of the four points from the axes are proportional to the
latera recta,
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40. If the product of the semi-axes of the conie 22+ 2zy + 17y2=8
be nln;'ty, shew that the axes of coordinates are inclined at an angle
sin~14.

4]. S8ketch the curve 62% - 7zy - 5y?— 42 + 11y =2, the axes being
inclined at an angle of 30°.
42, Prove that the eccentricity of the conic given by the general
equation satisfies the relation
e 4_(a+b~2hoosw)’
1-et = G- ente
where w i8 the angle between the axes.

43, The axes being changed in any way, without any change of
origin, prove that inathe general equ&tion' of the second degree the
quantities ¢, fitg 72{9008”, af‘+lfy2-2fgh

sin?w 8in%w
invariants, in addition to the quantities in Art. 187.

[On making the most general substitutions of Art. 132 it is clear
that ¢ is unaltered; proceed as in Art. 137, but introduce the condition
that the resulting expressions are equal to the product of two linear
quantities (Art. 116); the results will then follow.]

’ sinw



" CHAPTER XVL
THE GENERAL CONIC.

870. Ix the present chapter we shall consider proper-
ties of conic sections which are given by the general equation
of the second degree, viz.

ax® + Shay + by® + 29z + 2fy +¢=0......... (1).

For brevity, the left-hand side of this equation is often
called ¢ (x, ), so that the general equation to a conic is

¢ (=, y)=0.
Similarly, ¢ (z, ') denotes the value of the left-hand
side of (1) when «’ and y' are substituted for = and y.

The equation (1) is often also written in the form §=0.

871. On dividing by ¢, the equation (1) contains five
. e b b g
independent constants U TR T and o

To determine these five constants, we shall therefore
require five conditions. Conversely, if five independent
conditions be given, the constants can be determined.
Only one conic, or, at any rate, only a finite number of
conics, can be drawn to satisfy five independent conditions.

872. To find the equation to the tangent at any point
(@, ¥) of the conic section
¢ (2, y) =ax® + 2hxy + by* + 29 + 2fy + ¢=0...(1).
Let (2", ¥") be any other point on the conic.
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The equation to the straight line joining this point to
@, ) is )

- '_y —1'/' e
y-y =L @) @).

Since both («', ') and (2", ") lie on (1), we have
ax’® + 2ha'y’ + by'* + 29’ + 2fy' +¢=0...... (3),
and  ax?+ 2hx"y" + by"* + 292" + 2fy" +¢c=0...... (4).
Hence, by subtraction, we have
a(@?~ ") + 2@y ~2Y') + b (7~ 4"
+2g9 (& — ")+ 2f (¥ —y")=0.......... ).
But

2 (wlyl — xllyll)=(xl + x/l) (yl_yl') + (xl _‘xll) (:'/I + yll)’
so that (5) can be written in the form
(@ —a") [a(@ +a")+h(y +y") + 29]
+ @ -y)A(E+2")+b (Y +y)+2f]=0,
y"—y'__a(x'+a:") +h(y +y")+29
o' -2 k@ +2")+by +y")+2f
The equation to any secant is therefore
,  a(@+x)+h(y +y")+2 ,
y=y=- h(x +x")+b(y +y”)+2]'(x =) (6).
To obtain the equation to the tangent at (¢, y'), we put
a#’=2 and y” =y in this equation, and it becomes
_ e +hy+g,
i~y
t.e. (ax’ + by’ + g)x + (ha' + by +f)y
= ax+ 2ha’y’ + by + gz’ + fy'
. = — gx' — fy’ — ¢, by equation (3).
The required equation is therefore
axx +h (xy'+x'y) +byy’ + 8 (x+X) + £ (Y +¥)

.6

Cor. 1. The equation (7) may be written down, from
the general equation of the second degree, by substituting
xx’ for a2, yy' for 3% ay' +a'y for 2xy, =+’ for 2x, and
y+y for 2y. (Cf Art. 152.)
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Cor. 2. If the conic pass through the origin we have
¢=0, and then the tangent at the origin (where 2’ =0 and
y=0)is g +/y =0,

t.e. the equation to the tangent at the origin is obtained by
equating to zero the terms of the lowest degree in the
equation to the conic.

878. The equation of the previous article may also be obtained
as follows; If (z', y') and (z”/, y”’) be two points on the conic section,
the equation to the line joining them is
a(z-7)(z-2")+hl(z-2) (y-y")+z-2) @y -y)]+bly-¥)(y-y")

=az®+ 2hzy + by? + 29z + Yy +c......... ).

For the terms of the second degree on the two sides of (1) cancel,
and the equation reduces to one of the first degree, thus representing
a straight line.

Also, since (z/, y') lies on the curve, the equation is satisfied by
putting z=2' and y=y’.

Hence (#’, y’) is a point lying on (1).
8o (z”, y”) lies on (1).
It therefore is the straight line joining them.
Putting 2" =2’ and y” =y’ we have, as the equation to the tangent
at (7, y),
a(z-2)+2h(z-2)(y-y)+d(y-y)
=az%+ 2hry +by?+ 29z +2fy +c,
ie.  2azr’+2h (z'y +zy’) +2byy’ + 292+ 2fy +c
=ax"?+2hz'y’ + by"?
= —2ga’ - 3fy’ - ¢, since (2, y') lies on the conic,
Hence the equation (7) of the last article,

874. To find the condition that any straight line

lz+my+n=0......cc.ccoooeeiiiiinnnn. (1),
may touch the conic

ax®+2hay + by + 292+ 2fy +¢=0 ............... 2)-

Substituting for y in (2) from (1), we have for the equation giving
the abscissa of the points of intersection of (1) and (2),

23 (am? - 2him + dB) — 2z (hmn — bln - gm? + flm)
+bn3-2fmn+com?=0............ (8).
“If (1) be a tangent, the values of z given by (3) must be equal.
The condition for this is, (Art. 1,)
(hmn — bin — gm?+ flm)? = (am3 - 2him + bl) (bn? — 2fmn + cm?).
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On simplifying, we have, after division by m3,
B (be - f?) + m? (ca - g%) +n2 (ab — h?) +2mn (gh - af) + 2nl (hf — bg)
+2lm (fg - ch)=0.
Bx. Find the equations to the tangents to the conic
22+ 42y 4+ 8y -5z -6y +8=0.................. (1),
which are parallel to the straight line x+4y=0.
The equation to any such tangent is
Ty +e=0....ccoevirrnniniiiininnnnnns @),
where ¢ is to be determined.
This straight line meets (1) in points given by
823 - 2z (5¢ +28) + 8¢® + 24¢ + 48=0.
The roots of this equation are equal, i.e. the line (2) is a tangent,
if {2(5c+28)}3=4.3. (8c®+24c+48), i.e. if c= -5 0r 8.
The required tangents are therefore
z+4y-5=0, and z+4y-8=0.
875. Asin Arts. 214 and 274 it may be proved that
the polar of (2, ¥') with respect to ¢ (x, y)=0 is
(ax’ + hy' + g)x + (ha' +by' +f)y + 92 +fy +¢=0.
The form of the equation to a polar is therefore the
same as that of a tangent.

Just as in Art. 217 it may now be shewn that, if the
polar of P passes through 7', the polar of 7' passes through
Po

The chord of the conic which is bisected at («, ¥')

being parallel to the polar of (z, y') [Arts. 221 and 280]
has as equation
(a2 +hyf +g) (@ — &) + (b + by +f) (y — y) = 0.
876. To find the equation to the diameter bisecting all
chords parallel to the straight line y=mw. (See fig. Art. 279.)
Any such chordis y=max+ K ..................... (1).
This meets the conic section
ax® + 2hxy + by* + 29 + %fy +¢c=0
in points whose absciss® are given by
ax® + 2ha (mx + K) +b (mx+ K)® + 29z + 2f (mx + K)+ c=0,
t.e. by *(a+ 2km + bm?) + 2¢ (hK + bmK + g + fm)
+bK*+2fK+¢=0.

i
>
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If «, and x, be the roots of this equation, we therefore
have
_2(h+bm)K+g+fm

atE= a + 2hkm + bm®

Let (X, Y) be the middle point of the required chord,
so0 that

z + 2 h+bm) K+ g+ fm
x-ata (rmEigiin @)
Also, since (X, Y) lies on (1) we have
Y=mX+K..........c..... .. 3)
If between (2 and g) we eliminate X we have a
relation between
This relation is
—(a + 2km + bm?) X = (h + bm) (¥ — mX) + g + fm,
t.e. X(a+hm)+ Y(h+bm)+g+fm=0.

The locus of the required middle point is therefore the
straight line whose equation is

z(a +hm)+y(h+bm)+ g+ fm=0.
If this be parallel to the straight line y=m'z, we

have b

, G+

iy ey L TIPS (4),
.e. a+h(m4m)+bmm' =0 ............... ().

This is therefore the condition that the two straight
lines y=mz and y=m'r may be parallel to conjugate
diameters of the conic given by the general equation.

877. To find the condition that the pair of straight lines, whose
equation is

A2+ 2Hzy + By?=0......ccoccoeerreennane 1),
may be parallel to conjugate diameters of the general conic
ax?+2hzy + by?+ 292+ fy +¢=0 ............... 2).

Let the equations of the straight lines represented by (1) be y =mz
and y=m'z, so that (1) is equivalent to

B (y - mz) (y - m'z) =0,

and hence m+m'= - 2—B§, and mm'=

L. 23

ol
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By the condition of the last article it therefore follows that the
lines (1) are parallel o conjugate diameters if

a+h(— 5 +b1—9=0,
t.e. if Ab-2Hh+ Ba=0.

878. To prove that two concentric conic sections always have a
pair, and only one pair, of common conjugate diameters and to find
their equation.

Let the two concentric conie sections be
ax®+ 2hzy + by?=1
a'g3+ Wy +byd=1.........cccevvrinnnnn. (2).

A2+ 2Hzy + By?=0.....cc00eevnnnn (3),
are conjugate diameters of both (1) and (2) if

\ 4b-2Hh + Ba=0,

and AY - 2HN + Ba' =0.

and
The straight lines

Bolving these two equations we have
A -2H B

ha'—Wa ab-ab bW -bh'
Substituting these values in (3), we see that the straight lines
2 (ha’ - K'a) - zy (ab’ - a’) +y* (bK' - b'h)=0......... @)
are always conjugate diameters of both (1) and (2).

Hence there is always a pair of conjugate diameters, real, coinoi-
dent, or imaginary, which are common to any two conoentnc oonic
sections,

EXAMPLES. XLII

1, How many other conditions can a conic section satisfy when
we are given (1) its centre, (2) its focus, (8) its eccentricity, (4) its
axes, (5) a tangent, (6) a ta.ngent and its point of contact, (7) the
position of one of its asymptotes?

2. Find the condition thst the straight line lz+my=1 may
touch the parabola (az - by)*-2(a®+b?%) (az+by)+(a’+b’)’=0 and
shew that 1f this straight line meet the axes in P and Q, then P
will, when it is a tangent, subtend a right angle at the point (a, b).

8. Two parabolas have a common focus; prove that the perpen-
dicular from it upon the common tangent passes through the
intersection of the directrices.
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. a? 2zy Y2 g e e e o
4. Shew that the conic at cosa+l-,-,=nn’a is inseribed in
the rectangle, the equations to whose sides are z2=a? and y2=>%%, and
that the quadrilateral formed by joining the points of contact is of
constant perimeter 4 o/a%+ b3, whatever be the value of a.

5. A variable tangent to a conic meets two fixed tangents in two
points, P and Q; prove that the locas of the middle point of PQ is a
conic which becomes a straight line when the given conic is a parabola.

8. Prove that the chord of contact of tangents, drawn from an
external point to the conic az?+ 3hzy + by®=1, subtends a right angle
at the centre if the point lie on the conic ]

a?(a®+ A% + Bh (a+ D) zy +y3 (A3 +b%) =a+b.

7. Given the focus and directrix of a conic, prove that the polar
of a given point with respect to it passes through another fixed point.

8. Prove that the locus of the centres of conics which touch the
axes at distances ¢ and b from the origin is the straight line ay =bz.

9. Prove that the locus of the poles of tangents to the conio
ax3+2hzy + by*=1 with respect to the conic a'z®+2h'zy+b'y?=1 is
the conic

a(Wz+b'y)3 -2k (a'z + h'y) (W2 +b'y) + b (a'z+ h'y)2=ab - A2
10. Find the equations to the straight lines which are conjugate
to the coordinate axes with respect to the conic 4z?+2Hzy + By?=1.
0!mIi‘imi the condition that they may coincide, and interpret the
rasult.
11. Find the equation to the common conjugate diameters of the
conics (1) 22+42y+6y3=1 and 222+ 6zy+9yi=1,
and (2) 22%-5zy +8y?=1 and 222+ 32y -9y3=1.
12. Prove that the points of intersection of the conics
az3+2hzy +by?=1 and a'z3+2h'zy +by3=1
are at the ends of conjugate diameters of the first conic, if
ab’ +a'b - 3hK =2 (ab - k?).
13. Prove that the equation to the equi-conjugate diameters of

. . axd+Shay + by 2 (23+y9%)
23— -—
the conic ax®+ 3hxy + by?=1is p 55"

879. Two conics, in general, intersect in four points,
real or imaginary.

For the general equation to two conics can be written
in the form

ax? + 2x (hy + g) + by* + 2fy + ¢ =0,
and a?+ 2e(Wy+g )+ by + 2f 'y + ¢ =0.

23—



356 COORDINATE ‘GEOMETRY.

Eliminating « from these equations, we find that the
result is an equation of the fourth degree in g, gnvmg
therefore four values, real or imaginary, for y. Also, by
eliminating =’ from these two equations, we see that there
is only one value of x for each value of y. There are there-
fore only four points of intersection.

880. Kgquation to any conic passing through the inter-
section of two gwen contics.

Let S=ax®+2hay+by*+ 29z +2fy +¢c=0......(1),
and  S'= a2+ 2wy + byt + 29’z + 2f 'y + ¢ =0...(2)
be the equations to the two given conics.

Then =N =0.ciiiiiiinninnnnnnnnns (3)
is the equation to any conic passing through the inter-
sections of (1) and (2).

For, since § and S’ are both of the second degree in 2

and y, the equation (3) is of the second degree, and hence
represents a conic section.

_Also, since (3) is satisfied when both .§ and §’ are zero,
it is satisfied by the points (real or imaginary) which are
common to (1) and (2)

: 'Hence (3) is a conic which passes through the intersec-
t.lons of (1) and (2).

881. 70 find the equations to the straight lines passing
through the intersections of two conics given by the genoral
equations.

As in the last article, the equation
(@—Ma) 22 +2(h— M)y + (b— N2+ 2 (9— M)

+2(f=M")y+(c—A)=0......(1),
represents some conic through the intersections of the given
conics.

Now, by Art. 116, (1) represents straight lines if
(a —2a) (b Xb) (c = Ae) + 2 (f - ¥") (9 -Ag) (b —MK)
= (a=2a) (f - M) = (6 - M) (9 - Ad)" - (c = Ad) (b — MA)*
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Now (2) is a cubic equation. The three values of A
found from it will, when substituted successively in (1),
give the three pairs of straight lines which can be drawn
through the (real or imaginary) intersections of the two
conics,

Also, since a cubic equation always has one real root,
one value of X is.real, and it could be shown that there can
always be drawn one pair of real straight lines through the
intersections of two conics.

382. AU conics which pass through the intersections of
two rectangular hyperbolas are themselves rectangular hyper-
bolas.

In this case, if S=0 and §’=0 be the two rectangular

hyperbolas, we have
a+b=0, and a'+5' =0. (Art. 358.)

Hence, in the conic §—AS'=0, the sum of the co-

efficients of 2* and y*
=(@—-Aa)+(B-N')=(a +B)— A (a' +8')=0.

Hence, the conic § —AS’ =0, s.e. any conic through the
intersections of the two rectangular hyperbolas, is itself a
rectangular hyperbola.

Cor. If two rectangular bolas interseot in f ints
4, B, C, and D,othe two str&ighltlyhpzf;s Aa; sl:d BC, whui!ch‘;nr: sp:onio
through the intersection of the two hyperbolas, must be a rectangular
hyperbola. Henoe AD and BC must be at right angles, Similarly,

BD and C4, and CD and 4B, must be at right angles. Hence D is
the orthocentre of the triangle 4BC,

Therefore, if two rectangular h{Eerbolas intersect in four points,
each point is the orthooentre of the triangle formed by the other

383. IfL=0, =0, N=0, and R =0 be the equations
to the four sides of a quadrilateral taken in order, the
equation to any conic passing through its angular points is

LN=A MR ..........ccccnuu.. ).

For L=0 passes through one pair of its angular points
and N =0 passes through the other pair. Hence LN =0 is
the equation to a conic (viz. & pair of straight lines) passing
through the four angular points.

“
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Similarly MR=0 is the equation to another conic
passing through the four points.

Hence LN =\ . MR is the equation to any conic through
the four points.

Geometrical meaning. Since L is proportional to the perpen-
dicular from any point (z, y) upon the straight line L=0, the
relation (1) states that the product of the perpendiculars from any
point of the curve upon the straight lines L=0 and N=0 is propor-

tional to the product of the perpendiculars from the same point upon
M=0 and R=0.

Henoe If a conic circumscribe a quadrilateral, the ratio of the
product of the perpendiculars from any point P of the conic upon two
opposite sides of the quadrilateral to the product of the perpendiculars
Jfrom P upon the other two sides is the same for all positions of P.

384. Equations to the conic sections passing through
the intersections of a conic and two
given straight lines.

Let §=0 be the equation to the
given conic.

Let u=0 and »=0 be the equa-
tions to the two given straight lines
where

u=axr+by+e,
and v=az+by+c.
Let the straight line % =0 meet the conic S=0 in the
points P and R, and let v = 0 meet it in the points @ and 7'
The equation to any conic which passes through the
points P, @, R, and 7' will be of the form
S=XAu.v. i 1).
For (1) is satisfied by the coordinates of any point
which lies both on §=0 and on % =0; for its coordinates
on being substituted in (1) make both its members zero.

But the points P and R are the only points which lie
both on §=0 and on u =0.

The equation (1) therefore denotes a conic passing
through P and R.

Similarly it goes through the intersections of §=0 and
v =0, ¢.e. through the points Q and 7.
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Thus (1) represents some conic going through the four
points P, @, R, and 7.

Also (1) represents any conic going through these four
points. For the quantity A may be so chosen that it shall
go through any fifth point, or to make it satisfy any fifth
condition; also five conditions completely determine a conic
section.

Ex. Find the equation to the conic which passes through the point
(1, 1) and also through the intersections of the conic
234 2xy +5y?- Tz -8y +6=0
with the straight lines 2z -y -5=0 and 3z+y-11=0. Find also
the parabolas passing through the same points.

The equation to the required conic must by the last article be of
the form

2+ 22y + 5y3 — Tz — 8y + 6=\ (22— y - 5) (Sz+y —11) ... (1).
This passes through the point (1, 1) if
1+2+5-T-8+6=A(3~1-5) (8+1-11), i.e.if A= - k5.
The required equation then becomes
28 (2% + 22y + 5y - Tz - 8y +6) + (32 — y - 5) (3 +y - 11)=0,
i 3443 + 552y + 139y — 233z — 218y + 223 =0,
The equation to the required parabola will also be of the form (1),
i.e.
23(1— 6)) + 2y (2+7) +y3(5+\) —2(7 - BTA) 5 (8+ 6X) + 6 — 55A=0.
This is a parabola (Art. 357) if (2+2)?=4(1-6)) (5+1),
ie it A=}[-12+4/10].
Substituting these values in (1), we have the required equations.

385. Particular cases of the equation

8=\uv.

I Let =0 and »=0 intersect on the curve, 4.e. in
the figure of Art. 384 let the
points P and @ coincide.

The conic § = Auv then goes
through two coincident points
at P and therefore touches the
original conic at P as in the
figure.

II. Let wu%=0and v=0
coincide, so that v=1u.
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In this case the point 7" also moves up to coincidence
with R and the second conic
touches the original conic at both
the points P and .

The equation to the second
conic now becomes S=Au?

‘When a conic touches a second
conic at each of two points, the
two conics are said to have double
contact with one another.

The two conics S = Au? and =0 therefore have double
contact with one another, the straight line =0 passing
through the two points of contact.

As a particular case we see that if u=0, v=0, and
w=0 be the equations to three straight lines then the
equation vw =Au’ represents a conic touching the conic
vw=0 where % =0 meets it, s.c. it is a conic to which
v=0 and w=0 are tangents and % =0 is the chord of
contact. :

III. Let »=0 be a tangent to the original conic.

In this case the two points P
and R coincide, and the conic
§ = Auwv touches S=0 where u=0
touches it, and »=0 is the equa-
tion to the straight line joining
the other points of intersection of
the two conics.

If, in addition, v =0 goes
through the point of contact of » =0, we have the equation
to a conic which goes through three coincident points at 7,
the point of contact of %=0; also the straight line
joining P to the other point of intersection of the two
conics is v=0.

IV. Finally, let v=0 and «=0 coincide and be
tangents at P. The equation §=Au' now represents a
conic section passing through four coincident points at the
point where u =0 touches §=0.
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386. Line at infinity. We have shewn, in Art.
60, that the straight line, whose equation is

0.2+0.y+C=0,

is altogether at an infinite distance. This straight line is
called The Line at Infinity. Its equation may for brevity
be written in the form C'=0.

‘We can shew that parallel lines meet on the line at
infinity.

For the equations to any two parallel straight lines
are

Az +By+C =0.................. 1),
and Az+ By+C'=0....ccoceunerennne (2).
Now (2) may be written in the form
c'-C

Ax+ By+C + C 0.2+0.y+C)=0,
and hence, by Art. 97, we see that it passes through the
intersection of (1) and the straight line
0.2+0.y+C=0.
Hence (1), (2), and the line at infinity meet in & point.

887. Geometrical meaning of the equation

where A 18 a constant, and w=0 18 the equation of a straight
line

The equation (1) can be written in the form
S=Mx(0.2+0.y+1),

and hence, by Art. 384, represents a conic passing through
the intersection of the conic §=0 with the straight lines

=0 and 0.2+0.y+1=0.

Hence (1) passes through the intersection of =0 with
the line at infinity.

Since § =0 and § =Au have the same intersections with
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the line at infinity, it follows that these two conics have
their asymptotes in the same direction.

Particular Case. Let
S=a?+y'-a’,
80 that S =0 represents a circle.

Any other circle is
2 +y* -2z — 2fy + ¢c=0,
t.e. d+yt-at=29x+2fy—a’—q,

so that its equation is of the form § =Au.

It therefore follows that any two circles must be looked
upon as intersecting the line at infinity in the same two
(imaginary) points. These imaginary points are called the
Circular Points at Infinity.

388. Geometrical meaning of the equation S =\, where
X 48 a constant.

This equation can be written in the form
S=20.2+0.y+1),
and therefore, by Art. 385, has double contact with §=0
where the straight line 0.2+ 0.y + 1 =0 meets it, 7.e. the

tangents to the two conics at the points where they meet
the line at infinity are the same.

The conics S=0 and S=A therefore have the same
(real or imaginary) asymptotes.

Particular Case. Let S=0 denote a circle. Then
8§ =\ (being an equation which differs from S=0 only in
its constant term) represents a concentric circle.

Two concentric circles must therefore be looked upon as

touching one another at the imaginary points where they
meet the Line at Infinity.

Two concentric circles thus have double contact at the
Circular Points at Infinity.
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EXAMPLES. XLIIL

1. What is the geometrical meaning of the equations S=\. T,
and S=u?+ ku, where S=0 is the equation of a conic, T'=0 is the
equation of a tangent to it, and x=0 is the equation of any straight
line?

2. If the major axes of two conics be parallel, prove that the
four points in which they meet are concyelic.

8. Prove that in general two parabolas can be drawn to pass
through the intersections of the conics
az?+ 2hzy + by + 292 +2fy +¢=0
and a'2®+2h'zy + b’y + 29’2+ 2f 'y + ¢ =0,
and that their axes are at right angles if & (a’ - )=}’ (a - b).

4, Through the extremities of two focal chords of an ellipse a
conic is described ; if this conic pass through the centre of the elﬂ'pse,
prove that it will cut the major axis in another fixed point.

5. Through the extremities of a normal chord of an ellipse a
circle is drawn such that its other common chord passes through the
centre of the ellipse. Prove that the locus of the intersection of
these common chords is an ellipse similar to the given ellipse. If the
eccentricity of the given ellipse be A/2 (/2—1), prove that the two
ellipses are equal, .

8. If two rectangular hyperbolas intersect in four points 4, B, C,
and D, prove that the circles desaribed on 4B and CD as diameters
cut one another orthogonally.

7. A circle is drawn through the centre of the rectangular
hyperbola zy=c2 to touch the curve and meet it again in two points;
prove that the locus of the feet of the perpendicular let fall from the
centre upon the common chord is the hyperbola 4zy=c3,

8. If a circle touch an ellipse and pass through its centre, prove
that the rectangle contained by the perpendiculars from the centre of
the ellipse upon the common tangent and the common ochord is
constant for all points of contact.

9. From a point T whose coordinates are (z/, y’) & pair of
tangents TP and T'Q are drawn to the parabola y®=4az ; prove that
the line joining the other pair of points in which the circumecirele of
the triangle TPQ meets the bola is the polar of the point
2a —- «/, y'), and hence that, if the circle touch the parabola, the line

Q touches an equal parabola.

10. Prove that the equation to the circle, having double contact

2
with the ellipse 2, + %=1 st the ends of a Itus rectum, is

23+y2-2aet x=a% (1 -2 -¢f).
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I11. Two circles have double contact with a conie, their chords of
contact being parallel. Prove that the radical axis of the two circles
is midway between the two chords of contact.

12. If a circle and an ellipse have double contact with one another,
prove that the length of the tangent drawn from any point of the
ellipse to the circle varies as the distance of that point from the
chord of contact.,

18. Two conics, 4 and B, have double eontact with a third conic
C. Prove that two of the common chords of 4 and B, and their
chords of contact with C, meet in a point.

14, Prove that the general equation to the ellipse, having double
contact with the circle z2+y3=a? and touching the axis of z at the
origin, is c3z3 4 (a?+ %) y? - 2acy =0.

15. A rectangular hyperbola has double contact with a fixed
central conio. If the chord of contact always passes through a fixed

point, prove that the locus of the centre of the hyperbola is & circle
passing through the centre of the fixed conic.

16. A rectangular hyperbola has double contact with a parabola ;
prove that the centre of the hyperbola and the pole of the chord of
contact are equidistant from the directrix of the parabola.

389. 7o find the equation of the pair of tangents that
can be drawn from any point (', y') to the general conic
(%, y) = ax® + 2hay + by® + 292 + 2fy + ¢ =0,
Let 7 be the given point (2, ), and let P and R be the

points where the tangents from
T touch the conic.

The equation to PR is there-

fore u=0,
where  u=(ax’ +hy +g)x
+(h + by +f)y + g2 +fy +c.

The equation to any conic
which touches §=0 at both of
the points P and R is

§=M¢ (Art. 385),
e ax® + 2haxy + by* + 29z + 2fy +¢

..... o

Now the pair of straight lines 7P and 7'R is a conic



DIRECTOR CIRCLE. 365

section which touches the given conic at P and R and
which also goes through the point 7

Also we can only draw one conic to go through five
points, viz. 7', two points at P, and two points at R.

If then we find A so that (1) goes through the point 7}
it must represent the two tangents 7P and 7'R.

The equation (1) is satisfied by ' and ¥’ if
ax®+ 2ha’y + by + 29% + 2fy + ¢
= A[ax? + 2h’y + by + 292’ + 2fy + ¢},
.. 1
t.e. if l\——_cﬁ(a:',g—/T)'
The required equation (1) then becomes
¢ («, ¥) [ax® + 2hay + by® + 292 + 2fy + ¢]
=[(ax + by +g) = + (k& + by +f)y + 92 + fyf +c]
ie. b, V) x b (', ¥) =W,

where % =0 is the equation to the chord of contact.

890. Director circle of a conic given by the gemeral
equation of the second degree.
The equation to the two tangents from («, ') to the
conic are, by the last article,
@ [ad (%, ¥) — (a2’ + hy' + g)]
+2ay [hd (¢, ') — (o + by + g) (b + by’ + 1))
+ 42 [b¢ (¢, ) — (A’ + by +f)*] + other terms =0...(1).
If («, y') be a point on the director circle of the conic,
the two tangents from it to the conic are at right angles.

Now (1) represents two straight lines at right angles if
the sum of the coefficients of «* and y* in it be zero,

te if (a+8)¢(7,y) - (o + by +9)' — (A + by’ +f)'=
Hence the locus of the point (/, ¥) is
(@ + ) (ax® + 2hay + by* + 292 + 2fy + ¢)
— (az + by + g)*— (’w+by+f)’
t.e. the circle whose equation is
(@ + 3°) (ab - A?) + 2 (bg — fR) + 2y (af — gh)
+c(@+b)—g*—f*=0
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Cor. If the given conic be a parabola, then ab=4A?
and the locus becomes a straight line, viz. the directrix of
the parabola. (Art. 211.) )

891. The equation to the director circle may also be obtained in
another manner. For it is a circle, whose centre is at the centre of
the conio, and the square of whose radius is equal to the sum of the
squares of the semi-axes of the conie.

The oentre is, Art. 862, the point (:%’;g, %_{{,) )
Also, if the equation to the conic be reduced to the form
az3+2hay + by +¢'=0,
and if a and B be its semi-axes, we have, (Art. 364,)
1 1 a+bd 1 ab-n?
‘-‘—,+E=Tcﬁ and W.: o
—(a+d)c
“ab-h?
The equation to the required circle is therefore

z_hf—by)’+ (y_gh_-f[)’= _fat+d)e

so that, by division, a?+ %=

ab =t &-1) =" ab-m
b) (abe +3fgh — af - bgh - ok
= -(axb) °+(£’_h,‘)’f b= H) (st 859).

392. The equation to the (imaginary) tangents drawn
JSrom the focus of a conic to touch the conic satisfies the
analytical condition for being a circle.

Take the focus of the conic as origin, and let the axis of
x be perpendicular to its directrix, so that the equation to
the latter may be written in the form « + k=0.

The equation to the conic, ¢ being its eccentricity, is
therefore 2+y’=e(x+ k),
i.e. @ (1 —é') + 92 — 26k — e’ = 0.

The equation to the pair of tangents drawn from the
origin is therefore, by Art. 389,

[2* (1 — &) + y* — 2% — %] [— h°] = [— etk — 2R°]°,
we. 2 (1 —€*) + y* — 2w — *h* = — &* [ + K]°,
i.e. B+yYP=0.eiiiiiiininnine, (1).

Here the coefficients of «* and %* are equal and the
coefficient of xy is zero.
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However the axes and origin of coordinates be chan
it follows, on making the substitutions of Art. 129, that in
(1) the coefficients of 2* and y* will still be equal and the
coefficient of xy zero.

Hence, whatever be the conic and however its equation
may be written, the equation to the tangents from the focus
always satisfies the analytical conditions for being a circle.

393. 7o find the foct of the conic given by the general
equation of the second degree
ax® + 2hay + by + 292 + 2fy + ¢ = 0.
Let (¢, y') be a focus. By the last article the equation

to the pair of tangents drawn Irom‘it satisfies the conditions
for being a circle.

The equation to the pair of tangents is
¢ (<, ¥) [ax® + 2hxy + by* + 292 + 2y + ¢]
=[x (ax’ + by + g) +y (k' + by +f) + (92 +fy' + )

In this equation the coefficients of x* and y* must be
equal and the coefficient of xy must be zero.

‘We therefore have
ad (@, y) — (a + by +9)" = b (¢, ¥) — (A’ + by +f )},
and h (&, ) =(ax + by’ +9g) (ha! + by +f),
i.e.
(a2 + by + g)* — (b +by' + ) (a + by + g) (ke + by +.f)
- h

a—b

=¢ (&, Y) eererrininnns (4).
These equations, on being solved, give the foci.

Cor. B8ince the directrices are the polars of the foci,
we easily obtain their equations.

804. The equations (4) of the previous article ;uve, in general,
four values for ' and four corresponding values for y'. Two of these
would be found to be real and two imaginary.

In the ocase of the ellipse the two imaginary foci lie on the minor
axis. That these mgmary fooi exist follows from Art. 247, by
writing the standard equation in the form

2
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This shews that the imaginary point {0, »/5~ a?} is a focus, the
imaginary line y — 'J,L =0 is a directrix, and that the correspond-
ing eccentricity is the imaginary quantity \/ -at,

Similarly for the hyperbola, except that, in tlns case, the ecoen-
tricity is real.
. Inthe case of the parabola, two of the foci are at infinity and are
imaginary, whilst a third is at infinity and is real.

8908. Bx. 1. Find the focus of the parabola
1622 — 24y + 9y? - 80z — 140y + 100=0.
The focus is given by the equations
(162’ — 12y’ — 40)2 — (- 122 + 9y’ — 70)3
7

_ (162 =12y’ - 40) (- 122/ +9y’ - 70)
-12

=162 - 242y’ + 9y — 80z’ — 140y’ +100............ ).
The firat pair of equation (1) give
12 (162’ - 12y’ — 40)2.+ 7 (162 — 12y’ - 40) (- 122’ + 9y’ - 70)
-12(- 122 + 9y’ - 70)*=0,
ie. {4(162' —12y’ —40) -3 (- 122’ + 9y’ - 70)}
x {3 (162’ - 12y’ — 40) + 4 (- 12# + 9y’ - 70)} =0,

ie. (1002’ ~ 75y’ +50) x ( — 400)=0,
80 that y,=4_.’l_7_'3;i-_g.

‘We then have 16z’ - 12y’ — 40= - 48,
and -122'4+ 9y’ - 70= - 64,

The second pair of equation (1) then gives
B (e — 199/ - 40)+y/(~ 12/ + 9y’ ~T0) - 40/ - 10+ 100
= — 482/ - B4y’ — 402/ — 70y’ +100
= — 882/ — 134y’ + 100,
e, ~266= —8gy - 20T 4208

so that /=1, and then y’=2.’
The focus is therefore the point (1, 2).

+100,
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In the case of a parabola, we galso find the equation to the
dneotrxx, by Art. 390, and then find the poordinates of the focus,
which is the pole of the directrix.
Bx. 2. Find the foci of the conic
5523 - 30zy + 39y? - 40z - 24y — 464 =0.
The foci are given by the equation
(552’ — 15y’ — 20)* - (- 152’ + 39y’ — 12)3
16

(852 — 16y’ - 20) ( - 152’ + 89y’ — 12)
- -15
=552/~ 802y’ + 39y — 402’ — 24y’ — 464
The first pair of equations (1) gives
15 (552’ — 16y’ - 20)* + 16 (552’ — 16y — 20) ( — 162’ + 39y’ — 12)
-15 (- 162’ + 39y’ — 12)3=0,

ie. {5 (552’ — 16y’ — 20) - 8 ( - 152 + 89y’ — 12)}
{8(552 - 15y’ — 20) +5 ( - 152’ + 89y’ — 12)} =0,
ie (52 -3y’ - 1) (82’ + by’ - 4) =0,
~1
y'=§f—$— ............................ @),
. 3-4
or = ——5 T teeesessesesteicsntaniane (8)

Substituting this first value of y in the second pair of equation (1),
we obtain "
_95 (22 - 1p= 84023 - 8402’ — 1865

. _—3— T
giving 2 =2 or —1. Henoce from (2) y’=8 or - 2.
On substituting the second value of 3’ in the same pair of equation
(1), we finally have
223 - 22’ +18=0,

the roots of which are imaginary.

We should thus obtain two imaginary foci which would be found
to lie on the minor axis of the conic section. The real foci are
therefore the points (2, 3) and (-1, —-2).

896. Equation to the axes of the general
conic.
By Art. 393, the equation
(az + hy +9)' — (he + by +f)' _ (ax + hy +g) (ha+by +f)
B h

a—-b

represents some conic passing through the foci.
L. 24
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Baut, since it could be solved as a quadratic equation to
. ax+hy+g . . .
give he by f it represents two straight lines.

The equation (1) therefore represents the axes of the
general conic.

' 897. To find the length of the straight lines drawn
through a given point tn a given direction to meet a given
conic.

Let the equation to the conic be
& (% y) =ax® + 2hay + by* + 292 + 2fy +¢=0...(1).
Let P be any point («, %), and through it let there be
drawn a straight line at an angle 6

with the axis of 2 to meet the
curve in @ and @'

The coordinates of any point
on this line distant » from P
are

o +rcosf and y' +rsiné.
(Art. 86.)
If this point be on (1), we X
have
a (' + 7 cos 0)* + 2k (' + r cos 0) (¥ + +sin 6) + b (¢ +rsin 6)?
+2g (@' +rcos )+ 2f (¥ +rsinf)+c=0,

t.e.
73 [a cos? @ + 2k cos @ sin 6 + b sin® 6]
+2r [(ad +hy' + g) cos 0 + (k' + by + f) sin 0] + (¢, &) =0

For any given value of 6 this is a quadratic equation in
7, and therefore for any straight line drawn at an inclina-
tion 6 it gives the values of Q@ and PQ' .

If the two values of r given by equation (2) be of
opposite sign, the points @ and @ lie on opposite sides
of P.

If P be on the curve, then ¢ («, y’) is zero and one value
of » obtained from (2) is zero.
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398. If two chords PQQ' and PRR’' be drawn in given
directions through any point P to meet the curve in @, @ and
R, R’ respectively, the ratio of the rectangle PQ.PQ to the
rectangle PR . PR’ 18 the same for all points, and is therefore
equal to the ratio of the squares of the diameters of the conic
which are drawn in the given directions.

The values of PQ and PQ’ are given by the equation of
the last article, and therefore

PQ. PQ' = product of the roots

- ¢(m"3/) o (1)
acos? 0+ 2h cos @ sin 6 + b sin? 6"V

So, if PRR’ be drawn at an angle & to the axis, we have
PR.PR'= $ (%, ¥) (2).

acos’? + 2hcos @ sin @ + bsin?¢”
On dividing (1) by (2), we have
PQ.PQ _ acos’d +2hcos §'sin @ +bsin* ¢
PR.PR ™~ acos?0+2kcosfsin 6 +bsin’6 °
The right-hand member of this equation does not contain

a or g/, i.e. it does not depend on the position of P but only
on the directions 6 and ¢".

PQ.PQ
PR. PR

is therefore the same for all

The quantity
positions of P.

In the particular case when P is at the centre of the

]
conic this ratio becomes gQ',, , where C is the centre and C¢Q’
and CR” are parallel to the two given directions.

Cor. If @ and @’ coincide, and also R and R’, the two
lines PQQ’ and PRR' become the tangents from P, and the
above relation then gives

rgp _oe” ., BQ_C¥
PR CR™ "" PR CER"
Hence, If two tangents be drawn from a point to a conic,
their lengths are to one another in the ratio of the parallel
semi-diameters of the conic.

24—2
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399. If PQQ and P,Q,Q, be two chords drawn m
parallel directions from two points P and P, to meet a conic
n Q and @', and @, and @, respectively, the'n the ratio of
the rectangles PQ . PQ' and P\Q,. P,Q,’ 8 independent of the
direction of the chords.

For, if P and P, be respectively the points (', y’) and
(2", "), and 0 be the angle that each chord makes with
the axis, we have, as in the last article,

_ ¢, y) o
PQ.PY = T TR P T T bR’
' _ z9y)
and P'Q"P‘Q‘-acos’0+2h0050sm0+bsin’0’
80 that PQ.PQ ¢ (x,¥)

PQ,.PQ ¢ @, y")

400. If a circle and a conic section cut one another in four points,
the straight line joining one pair of points of intersection and the
straight line joining the other pair are equally inclined to the azxis of
the conic.

- For (Fig. Art. 897) let the circle and conic intersect in the four
points Q, @’ and R, R’ and let QQ’ and RR’ meet in P.
PQ.PY _CQ”
But, since @, @', R, and R’ are four points on a circle, we have
PQ. PQ’=PR PR'. [Euc. IIL 36, Cor.]
QII RII
- Alsoin any conic equal rudu from the centre are equally inclined
to the axis of the conic.

Hence CQ"” and CR”, and therefore PQQ’ and PRR/, are equally
indlined to the axis of the conio.

401. To shew that any chord of a conic i cut har-
monically by the curve, any point on
the chord, and the polar of this point
with respect to the conic.

Take the point as origin, and let
the equation to the conic be

ax® + 2hacy + by + 292 + 2fy +¢=0
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or, in polar coordinates,
7%(a cos?0 + 2h cosf8in b + b sin? 6) + 2r (gcos 6 + fsinb) +c=0,
.e.
1 1 .
c.;—,+2.;. (g cos 0 + fsin 6)
+ a cos? @ + 2h cos 0 8in 8 + b 8in?0 = 0.

Hence, if the chord O PP’ be drawn at an angle 6 to 0X,
we have

01_P+ OLP,=sum of the roots of this equation in %
=-g 92270,

Let R be a point on this chord such thab
2 1 1 ’
OE~0P* 0P"
Then, if OR = p, we have
g__2goosﬂ+fsin0
P c ’
8o that the locus of R is
g.pcosf+f.psinf+c=0,
or, in Cartesian coordinates,

gr+fy+ec=0.cccooeriinnnnnn.n. (2).
But (2) is the polar of the origin with respect to the
conic (1), so that the locus of R is the polar of 0.
The straight line PP is therefore cut harmonically by O
and the point in which it cuts the polar of 0.

Bx. Through any point O is drawn a straight line to cut a conic
in P and P’ and on it is taken a point R such that OR is (1) the
arithmetic mean, and (2) the geometric mean, between OP and OP'.
Find in each case the locus of R.

Using the same notation as in the last article, we have

_ goosf+fein b
OP+O0P'= -2aoos’0+2hooaasin0+bsin’0’
and OP.OP'= c

a008? 0+ 2h cos 0 8in 0 + b 8in24
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(1) If R be the point (p, §) we have
_ _ goosf+fsind
p=}(0P+OP)=- acos? 0+ 2hcos 0 8in 6+ bein¥ @’
i.e. ap 0o 6+ 2hp cos 0 8in 9 + bp 8in® 6+ g cos 6 + f 8in =0,
{i.e., in Cartesian coordinates,
az?+ 2hzy + by? + gz +fy=0.

The locus is therefore a conic passing through O and the inter-
section of the conio and the polar of O, i.e. through the points T
and 7', and having its asymptotes parallel to those of the given
conic.

(2) If R be the point (p, 6), we have in this case

: c

P=O0P . OF = s 5 Bh oos 68in 64 5 B’ 0’
i.e. ap?0083 0+ 2hp? cos 6 gin 0+ bp*sin? b =c,
i.e. az3 + 2hay + by3=c.

The locus is therefore & conic, having its centre at O and passing
through T and 7', and having its asymptotes parallel to those of the
given conie. .

402. To find the locus of the middle points of parallel chords of a
conic. [Cf. Art. 876.]

The lengths of the segments of the chord drawn through the point
g’éy') at an angle 8 to the axis of z is given by equation (2) of Art.

If (2/, y’) be the middle point of the chord the roots of this
equation are equal in magnitude but opposite in sign, so that their
algebraio sum is zero.

The coefficient of r in this equation is therefore zero, so that
(ax’ + hy’ + g) 008 0 + (hz’ + by’ + f) 8in 6=0.
The locus of the middle point of chords inclined at an angle 6 to
the axis of z is therefore the straight line
(ax+ hy + g) + (hz+ by +f) tan §=0.
Hence the locus of the middle points of chords parallel to the line

y=mz is
(az +hy +g) + (hz+ by +f) m=0,
i.e. z(a+hm) + (h+bm)y+g+fm=0.
This is parallel to the line y=m'z if
,_ _G+hm
= “h+om’
e if a+h(m+m') +bmm’=0.

This is therefore the condition that y=me and y=m'z should be
parallel to conjugate diameters.
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403. Egquation to the pair of tangents drawn from a given point
(', ¥) to a given conic. [Cf. Art. 889.]

If a straight line be drawn through (<, y’), the point P, to meet
the conio o @ and @', the lengths of PG ud’ PG are given by the
equation

72 (@ 00830 + 3% 0os @ 8in 6+ b 8in? 6)
+2r[(az’ + Ry’ + g) 008 0+ (hz’ + by’ + f) 8in 0]+ ¢ (/, y) =O0.
The roots of this equation are equal, i.c. the corresponding lines
touch the conie, if
(a 008? @+ 2h cos 0 gin 0 + b 8in?6) x ¢ («’, ¥)
=[(az’ + hy’ +g) 008 0 + (hz’ + by’ + f) 8in 613,
i.e.if (a+2htand+btan?f) x ¢ (2, ¥')
=[(az’ + by’ + g) + (e’ + by’ +f) tan 6 ...(1).

The roots of this equation give the corresponding directions of the

tangents through P.

Also the equation to the line through P inclined at an angle 8 to
the axis of z is

z-z
If we substitute for tan 6 in (1) from (2) we shall get the equation
to the pair of tangents from P.
On substitution we have

{a(@z-2)+2h(z-2)(y-y)+b(y-yV} o (=, ¥)
=[(az’ + by’ +9) (z- =) + (h’ +- by’ +f) (y - ¥)P-
This equation reduces to the form of Art. 389.

BEXAMPLES. XLIV.

1. Twotano(ﬁntsaredmwn to an ellipse from a point P; if the
points in which these tangents meet the axes of the ellipse be
oonacyclic, prove that the locus of P is a rectangular hyperbola.

2. A pair of tangents to the conic 4z3+By?=1 intercept a
constant dlgst;rnoe 2k on the axis of z; prove that the locus of their
point of intersection is the curve

By3 (d2%+ By? - 1)= A4k (By?-1)3,

8. Pairs of tangents are drawn to the conic az?+gy?=1 8o as to

be always parallel to conjugate diameters of the conia
az?+ hay +by*=1;
shew that the locus of their point of intersection is the conic

a b
az'+2hzy+by’=;+5.
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4, Prove that the director circles of all conics which touch two
given straight lines at given points have a common radical axis.

5. A parabola circumscribes a right-angled triangle. Taking its
sides as the axes of coordinates, prove that the loous of the foot of the
perpendicular from the right sngle upon the direotrix is the curve
whose equation is

Bzy (23 +y3) (hy + kz) + hly* + kit =0,
and that the axis is one of the family of straight lines
mbh—k
1+md’
where m is an arbitrary parameter and 2h and 2k are the sides of the
triangle.

Find the foci of the curves

6. 800z%+ 8202y + 144y2 - 1220z — 768y +199=0.

7. 16a?—24zy +9y?+ 282+ 14y +21 =0,

8. 1442%-120xy +26y%+ 672 - 42y +13=0,

9. 2°-6ay+y?- 10z - 10y - 19=0 and also its directricos,

10. Prove that the foci of the conic

az + 2hay + by?=1
are given by the eqmtions
-y _zy_ 1
a-b h al-b?

11. Prove that the locus of the foci of all conics which touch the
four lines z= +a and y = +b is the hyperbola 22 - y3=a3 - b2

12. Given the centre of a conic and two tangents; prove that the
locus of the foci is & hyperbola.

[Take the two tangents as axes, their inclination being w; let
(z;, v;) and (x;, y,) be the foci, and (k, k) the given centre. Then
Z, +25=2h an yl+y,_2k also, by Art. 270 (8), we have

91y 8in? w =22, 8in% w = (semi-minor axis)3,

From these equations, eliminating z; and y,, we have

2~ y,*=2hz, - 2ky, .]

13. A given ellipse, of semi-axes a and b, slides between two
perpendicular lines; prove that the locus of its focus is the curve

(229 (2 + b =da'ey?

14. Conics are drawn tonchmg both the a.xes, supposed oblique, at
the same given distance a from the origin, Prove that the foei lie -
either on the straight line z=y, or on the circle

22 +y%+ 22y cos w=a(z+y).

15. Find the locus of the foci of conics which have a common point

and a common director circle.

y=mz-
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16. Find the locus of the focus of a rectangular hyperbola a
diameter of which is given in magnitude and position,

17. Through a fixed point O chords POP’ and QOQ’ are drawn at
right angles to one another to meet a given conic in P, P, @, and Q'.

PO.OP

18. A point is taken on the major axis of an ellipse whose abscissa
is ae+,j2-e* s prove that the sum of the squares of the reciprocals
of the segments of any chord through it is constant.

19. Through a fixed point O is drawn a line OPP’ to meet a conio
ian and P’; prove that the loous of a point Q on OPP’, such that
1

1 . . .
0%~ OP + ) is another conic whose centre is O.

1 |
Prove that ———/ + 0.0¢’ is constant,

20. Prove Carnot’s theorem, viz.: If a conic section out the side
BC of a triangle 4ABC in the points 4’ and 4", and, similarly, the
side C4 in B’ and B”, and AB in (' and C”, then
BA’.BA” .CB’'.CB"” ,AC', AC"=CA’ .CA"” .AB' . AB" . BC'. BC".
[Use Art. 898.]

21. Obtain the equations giving the foci of the general conic by
making use of the fact that, if S be a focus and PSP’ any chord of
the conic passing through it, then %,+ s—,i—, is the same for all direc-
tions of the chord.

22. Obtain the equations for the foci also from the fact that the

product of the perpendiculars drawn from them upon any tangent is
the same for all tangents.

404. To find the equation to a conic, the axes of co-
ordinates being a tangent and normal to the conic.

" Since the origin is on the curve, the equation to the

curve must be satisfied by the coordinates (0, 0) so that the

equation has no constant term and therefore is of the form

ax® + 2hay + by? + 29 + 2fy = 0.

If this curve touch the axis of x at the origin, then,
when y =0, we must have a perfect square and therefore
g=0.

The required equation is therefore

ax’ + 2hay + by* + 2fy=0............... (1).

Bx. Ois any point on a conic and PQ a chord ; prove that

pwrg)ong; hI;Q mbfelm:t aoﬁ%% angle at O, it passes through a fized
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(3) ¢f OP and OQ be equally inclined to the normal at O, then
PQ passes through a fized point on the tangent at O.

Take the tangent and normal at O as axes, so that the equation to
the conio is (1).

Let the equation t0 PQ be y=mZ+C ....cceevcevrirrerrrecrernnnas (2).
Then, by Art, 122, the equation to the lines OP and 0Q is
¢ (az3+ 3hzy + by?) + 3y (y ~mx)=0............... (3)
(1) If the lines OP and OQ be at right angles then (Art. 66), we
have ac+be +3f=0,
9f
i.e. c= -ﬁb

=a constant for all positions of PQ.

(I)But ¢ is the intercept of PQ on the axis of y, ¢.c. on the normal
at 0.
The straight line PQ therefore passes through a fixed point on the
normal atOwhiohisdintanté—_'_—z'-{from o.

This point is often called the Frégier Point.

(2) If again OP and OQ be equally inclined to the axis of y then,
in equation (3), the coefficient of 2y must be zero, and hence

9he - 2fm=0,
S

i.e. ’ LA constant.
m h

But —m_c is the intercept on the axis of z of the line PQ.
. (gienoe, in this case, PQ passes through a fixed point on the tangent
a . .
405. Qeneral equation to conics passing through fouwr
given points.

Let A, B, C, and D be the four points, and let B4 and
CD meet in 0. Take OAB
and ODC as the axes, and
let 0A=\ OB=X, OD=p,
and OC =y,

Let any conic passing
through the four points be
' + 20 xy +by*

+2g2+2fy+¢=0...(1).

If we put y=0 in this
equation the roots of the
resulting equation must be A and X\
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Hence 2g=—a(k+ X) and ¢=al\,
A+ )N
W

Similarly b=->,, and 2f= 'u+f‘.
v e’ V= [

t.e. M” and 29=—c¢—

On substituting in (1) we have
pp'e + 2hay + ANy — pp’ A+ X)) 2
=N (o + @)y + NN pp' =0......(1),
where h=W M .
This is the required equatlon h being a constant as yet

undetermined and depending on which of the conics through
4, B, C, and D we are considering.

406. Aliter. We have proved in Art. 383 that the
equation XLN = MR, k being any constant, represents any
conic circumscribing the quadrilateral formed by the four
straight lines L =0, =0, N =0, and =0 taken in this
order.

With the notation of the previous article the equations
to the four lines 4B, BC, CD,.and DA are

y=0, x*,T"l =0, z=0,

2 Y 1=
and X+,u 1=0.

The equation to any conic circumscribing the quadri-
lateral ABCD is therefore

(2, ¥ _1)(2+¥_
W‘(X"’p’ 1)(A+F l) .......... 1),
s.e

pp'? + oy (A’ + N — EN ) + AN 'y?
— A+ X) 2= AN (g + ) y + A’ = 0.

On putting Ap’ + M — kAN gy’ equal to another constant
2h we have the equation (1) of the previous article.
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407. Only one conic can be drawn through any five
pownts.

For the general equation to a conic through four points
is (1) of Art. 405.

If we wish it to pass through a fifth point, we substitute
the coordinates of this fifth point in this equation, and thus
obtain the corresponding value of 4. Except when three of
the five points lie on a straight line a value of 4 will always
be found, and only one.

EBx. Find the equation to the conic section which passes through
the five points 4, B, C, D, and E, whose coordinates are (1, 2), (3, —4),
(-1, 8), (-2, -38), and (5, 6).

The equations to 4B, BC, CD, and D4 are easily found to be

y+8z-56=0, dy+T72-6=0, 6z-y+9=0, and 5z-3y+1=0.

The equation to any conic through the four points 4, B, C, and D
is therefore

(y +32-5) (62 -y +9) = (49 + Tz - 5) (52 - By +1).......(1).

If this conic pass through the point E, the equation (1) must be
satisfied by the values =5 and y=6. ’

We thus have A=3% and, on substitution in (1), the required
equation is
22348 — 882y ~ 128y3 - 171z + 88y + 850=0,
which represents a hyperbola,
408. 7o find the general equation to a conmic section

which touches four given straight lines, i.e. which t8 inscribed
n a given quadrilateral.
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Let the four straight lines form the sides of the quadri-
lateral ABCD. Let BA and CD meet in O, and take 04B
and 0DC as the axes of = and g, and let the equations to
the other two sides BC and DA be

he+my—1=0, and Lz +my—1=0.

Let the equation to the straight line joining the points
of contact of any conic touching the axes at P and @ be

ax + by—1=0.
By Art. 385, II, the equation to the conic is then
2\zy = (ax + by — 1) .ueenennnnnn.ee. (1)

The condition that the straight line BC should touch
this conic is, a8 in Art. 374, found to be

A=2(@-0)(b—m) ... (2)
Similarly, it will be touched by 4D if
A=2@@—&)(d—my)eernrnnenn. (3).

The required conic has therefore (1) as its equation, the
values of @ and b being given in terms of the quantity A by
means of (2) and (3).

Also A is any quantity we may choose. Hence we have
the system of conics touching the four given lines.

If we solve (2) and (8), we obtain
2-(m+mg) 20— (11+la)
my - my ] \/1 (URTAT 1:)(7»; (g~ 1) *

. 409. The conic LM =R where L=0, M=0, and
R =0 are the equations of straight lines.
The equation LM =0 represents a conic, viz. two straight
lines. :
Hence, by Art. 385, IT, the equation

represents a conic touching the straight lines L =0, and
M =0, where R =0 meets them.
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Thus L=0 and M =0 are a pair of tangents and R =0
the corresponding chord of contact.

Every point which satisfies the equations M =pu*L and
R =plL clearly lies on (1).

Hence the point of intersection of the straiglit lines
M=p’L and R=plL lies on the conic (1) for all values of
p This point may be called the point * p.”

410. 7o find the equation to the straight line joining
two points “p” and “ W) ” and the equation to the tangent at
the point * p.”

Consider the equation

aL +bM + R=0.....cccvcuruurenns 1).

Since it is of the first degree and contains two constants
@ and b, at our disposal, it can be made to represent any
straight line.

If it pass through the point “ u” it must be satisfied by
the substitutions M = u’L and R =pL.

Hence a+bp’ +p=0.c.ieiiiininnnnnn. (2)-
Similarly, if it pass through the point ¢ u’” we have
G+bpB+ ' =0.ceiieiiiinnnnnne. (3).
Solving (2) and (3), we have
a —1

=
On substitution in (1), the equation to the joining line is
Ly + M— (p+p') R=0.
By putting u'=x we have, as the equation to the
tangent at the point “u,”
Lp*+ M- 2uR=0.
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EXAMPLES. XLV.

1. Prove that the locus of the foot of the perpendicular let fall
from the origin upon tangents to the conic ax’+2hzg+ by?=2z is the
ourve (h2- ad) (23 +y7)3+ 3 (2%+y?) (b= — hy) +y3=0.

2. In the conis az’+3hzy+by?=3y, prove that the rectangle
oontained by the focal distances of the origin is ———

ab-h’

8. Tangents are drawn to the conic ax®+ 3hzy+by?=2z from
two points on the axis of z equidistant from the origin; prove that
their four points of intersection lie on the conis dy?+ hzy==z.

If the tangents be drawn from two points on the axis of y equi-
distant from the origin, prove that the points of intersection are on a
straight line. ]

4. A system of conics is drawn to pass through four fixed points;
prove that

(1) the polars of a given point all pass through a fixed point,
and (2) the loous of the pole of a given line is a conic section,

5. Find the equation to the conic passing through the origin and
the points (1, 1), (-1, 1), (2, 0), and (8, —2). Determine its species.

6. Prove that the locus of the oentre of all conics circumseribing
the quadrilateral formed by the straight lines y=0, =0, z+y=1,
and y — =2 is the conio 22— 23+ 4zy + by — 3=0.

7. Prove that the locus of the centres of all conics, which pass
through the centres of the inscribed and escribed circles of a triangle,
is the circumseribing circle of the triangle.

8. Prove that the locus of the extremities of the principal axes of
all conics, which can be desoribed through the four points (+a, 0) and
(0, ), is the ourve

(5-%) @rvm=at-pn

9. 4, B, C, and D are four fixed points and 4B and CD meet in
O; any atnght line passing through O meets 4D and BC in R and
R’ respectively, and any conio passing through the four given points
in S and 8’; prove that 1 1 11

ortor=o0st 05"

10. Prove that, in general, two parabolas can be drawn through
four points, and that either two, or none, can be drawn.

[For a parabola we have h= % \/ANpx".]
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11. Prove that the locus of the centres of the conics circumserib-
ing a quadrilateral 4BCD (Fig. Art. 405) is a conic passing through
the vertices O, L, and M of the quadrilateral and through the middle
points of 4B, AC, AD, BC, BD, and CD.

Prove also that its asymptotes are parallel to the axes of the
parabolas through the four points.

[The required locus is obtained by eliminating 4 from the
tions 2uu'z+2hy — uu’ \+N')=0, and 2hz+2\\y - N\’ (x+4)=0.]

12. By taking the case when A\’= — uu’ and when 4B and CD
are perpendicular (in which case 4BC is a triangle having D as its
orthocentre and AL, BM, and CO are the perpendiculars on its
sides), prove that all conics passing through the vertices of a triangle
and its orthocentre are rectangular hyperbolas.

From Ex. 11 prove also that the locus of its centre is the nine
point circle of the triangle.

13. Prove that the triangle OML (Fig. Art. 405) is such that each
angular point is the pole of the opposite side with respect to any
oor:ifnﬂuaing thro the angular points 4, B, C, and D of the
quadrilateral.

[Such a triangle is called a Self Conjugate Triangle.]

14. Prove that only one rectangular hyperbola can be drawn
through four given points, Prove also that the nine point circles of
the four triangles that can be formed by four given points meet in a

point, viz., the centre of the rectangular hyperbola passing through
the four points.

15. By using the result of Art. 374, prove that in general, two
ilo;nies can be drawn through four points to touch a given straight
0. ’
thatA system of conics is inscribed in the same quadrilateral ; prove

16. the locus of the pole of a given straight line with respect to
this system is a strmghtgome

17. the locus of their centres is a straight line passing through the
middle points of the diagonals of the quadrilateral.

18. Prove that the triangle formed by the three diagonals OL,
AC, and BD (Fig. Art. 408) is such that each of its angular points is
the pole of the opposite side with respect to any conic inscribed in the
quadrilateral.

19. Prove that only one parabola can be drawn to touch any four
given lines.

Hence prove that, if the four triangles that can be made by four
lines be drawn, the orthocentres of these four straight lines lie on a
straight line, and their circumecircles meet in a point.



CHAPTER XVIL
MISCELLANEOUS PROPOSITIONS.

On the four normals that can be drawn from any point in
the plane of a central conic to the conic.

411. LgT the equation to the conic be
A+ By =1...ccccovvvvannnnnn, ).
[If 4 and B be both positive, it is an ellipse; if one be
positive and the other negative, it is a hyperbola.]
The equation to the normal at any point («, ) of the
curve is
z—o y-y
42 — By
If this normal pass through the given point (k, k), we
have

h—o k-y
Ax' - Byl ’
i.e. (4 - B)«'y/ + Bhy' — Akt =0 ......... (2).

This is an equation to determine the point (', ') such
that the normal at it goes through the point (A, k). It
shews that the point («/, ') lies on the rectangular hyper-

bola
(4 - B)xy + Bhy — Akz=0............(3).

The point («/, y’) is therefore both on the curve (3) and
on the curve (1). - Also these two conics intersect in four
points, real or imaginary. There are therefore four points,

L. 25
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in general, lying on (1), such that the normals at them pass
through the given point (&, k).

Also the hyperbola (3) passes through the origin and
the point (h, k) and its asymptotes are parallel to the axes.

Hence From a given point four normals can in general

be drawn to a given central conic, and thewr feet all lie on a

certain rectangular hyperbola, which passes through the

ven point and the centre qf the comc, and has its asymptotes
parallel to the axes of the given conic.

412. 7o find the conditions that the normals at the
points where two given straight lines meet a central conic
may meet in a point.

Let the conic be .
A+ By =1 .couunnrnaninnnnnn. 1),
and let the normals to it at the points where it is met by
the straight lines
he+my=1........coceveninnns 2),
and le+my=1............ 3)

meet in the point (4, k).
By Art. 384, the equation to any conic passing through
the intersection of (1) with (2) and (3) is
Az + Byt — 1 + A (L + my — 1) (b + myy — 1) =0...(4).
Since these intersections. are the feet of the four
normals drawn from (h, k), then, by the last article, the
conic
(4— B)xy + Bhy — Akx=0 ............ (5)
passes through the same four points.
For some value of X it therefore follows that (4) and (5)
are the same.

Comparing these equations, we have, since the co-
efficients of «* and 3* and the constant term in (5) are all
zero,

A +ML=0, B+Amm,=0, and —1 +A=0.
Therefore A =1, and hence
Li,=—A4, and mmy=—B............ (6).
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The relations (6) are the required conditions.

Also, comparing the remaining coefficients in (4) and (5),
we have

Almy+lm) —A(G+L)  —A(my +my)

A-B — Ak Bh ’
so that h=—A%Bll::IZ:h ............... ),
- S e
Cor. 1. If thg given conic be an ellipse, we have
4 =%, and B= bl’ .

The relations (6) then give

all,=mmy=~1.................. 9),
and the coordinates of the point of concurrence are

3 __ p2 Ny T Wy 1
p@o B ot my g g 1= Om

@ bmy+lm, "afT + b'myt’
A8 L+l 1-a%2
and k=——b,—m——1m(a’—b’).m.

Cor. 2. If the equations to the straight lines be given
in the form y=mx+c¢ and y=m'z + ¢, we have

m==——, C=-—, m’:——li, and ¢ =—.
Cm T ™y my
The relations (9) then give
mm'=§, and cc’ = — b5

418. If the normals at four points P, Q, R, and S of an ellipse
meet in a point, the sum of their eccentric angles is equal to an odd
multiple of two right angles. [Of. Art. 298.]

25—2



388 COORDINATE GEOMETRY.

It a, B, v, and 3 be the ecoentric angles of the four points, the
equations to PQ and RS are

a-g
—_32 ¢+B+boos )

y=-2-2 2 myj !
2

-9

boos ———

and y=—z.%oot1;—6+ -36 . [Art. 259.]

sin 12

Since the normals at these points meet in a point, we have, by
Art, 412, Cor. 2,

]
g=m'=%oot%Pwt%£.
. a+f_ y+d_ 1_7+6)
..ta.n—g——_oot—2 _tan(2 rE

. at+B_ r_ y+8

“Tg otgT e

{i.e. a+B+y+d=2n+1)m.
4l14. Bx. 1. If the normals at the points 4, B, C, and D of an

ellipse meet in a point O, prove that SA .SB.SC.SD=»\.S0?, where
8 is one of the foci and \ is a constant.

Let the equation to the ellipse be

and let O be the point (%, k).
As in Art. 411, the feet of the normals drawn from O lie on the

hyperbola
1 1 hy kz_
;s‘ia) tEoah
i.e. a3y =ahy — VKT .cccvvevieeiinnnnnnnnnns .(2).

The coordinates of the points 4, B, C, and D are therefore found
by solving (1) and (2), : - )

From (2) we have y=;r(7‘_—e,;)'.
Substituting in (1) and simplifying, we obtain
zhalet — Bha%edxs + 22 (a2h? + 2 — ated) + 2he%a'z — ath¥=0...(8).
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If z,, z,, x5, and z‘ be the roots of this equation, we have (Art. 2),

a%h? + %3 — ated
z"1= )y ZE2 . Y

2ha? a%h?
Zayzgty= -~ and oEgw = -
If 8 be the point (- ae, 0) we have, by Art. 251,
Sd=a+ez,.
. 84.8B.SC.SD=(a+ex))(a+ ex)) (a+exy) (a+ex)
=a4+a%2z, +a%IZz,2; + ad I3, 243y + 2,447,

=2 {(h+ae)* + 3}, on substitution and simplification,

X
=G S0
Alter. If pstand for one of the quantities S4, SB, SC, or SD
we have p=a+ez,
i.e. .'¢:=1 (p-a).

Substituting this value in (3) we obtain an equation in the fourth
degree, and easily have

PIPePsP= ?[(h+a¢)’+ k7], as before.

nx.a. If the normals at four points P, Q, R, and 8 of a central
imm, and if PQ pass through a fized point, find the

locuc of the e point of RS.
Let the equation to PQ be
YSMTHCy eeerrinnniienieenniisrenennin 1),
and that to RS y= m,z+c, .......................... veene(2).

If the equation to the given oonic be 427+ By*=1, we then have
(by Art. 413, Cor. 9)

A
m,m,=§ .............................. a..(a),
1
and €16 = rrresssnennn s (4).
If (f, g) be the fixed point through which PQ passes, we have
I=Mf 61 cveriiiiniiiiininienninninenne (5).

Now the middle point of RS lies on the diameter conjugate to it,
i.e. by Art. 876, on the diameter

{.e., by (8), Y= =TT ceeniiniiiniiinirnansinecnnnenas (6).
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Now, from (4) and (5), L
“="Blg-pm)’

so that, by (8), the equation to RS is
4 1
y= ﬁm-l “B - fml) ........................
Eliminating m, between (6) and (7), we easily have, as the equation
uired locus,

to the requi
(42*+ By?) (9= +fy) + 2y =0.

Oor. From equation (6) it follows that the diameter conjugate to
RS is equally inclined with PQ to the axis, and hence that the poinljl
Pand Q ang the ends of the diameter conjugate to RS are concyclic
(Art. 400).

T

EXAMPLES. XLVL

1. If the sum of the squares of the four normals drawn from a
point O to an ellipse be constant, prove that the locus of O is a conic.

2, If the sum of the reciprocals of the distances from a focus of
the feet of the four normals drawn from a point O to an ellipse be

ﬁ? , prove that the locus of O is a parabola passing through that
focus.

8. If four normals be drawn from a point O to an ellipse and if
the sum of the squares of the reciprocals of perpendiculars from the
centre upon the tangents drawn at their feet be constant, prove that
the locus of O is a hyperbola.

4, The normals at four points of an ellipse are concurrent and

they meet the major axis in @,, G,, G4, and G,; prove that
1 1 1 1 4
ca, *ca,* ce, * 06,= ca, v ca,+ 06, v 06,

5. If the normals to a central conic at four points L, M, N, and
P be concurrent, and if the circle through L, M, and N meet the curve
again in P, prove that PP’ is a diameter.

6. Bhew that the locus of the foci of the rectangular hyperbolas
which pass through the four points in which the normals drawn from
any point on a given straight line meet an ellipse is a pair of conics.

7. If the normals at points of an ellipse, whose eccentric angles
are a, 8, and v, meet in a point, prove that

gin (8+ %) +sin (y +a) +8in (a+g) =0.
Hence, by page 235, Ex. 15, shew that if PQR be a maximum

triangle insoril in an ellipse, the normals at P, Q, and R are
concurrent.
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8. Prove that the normals at th:’ poix:ta where the straight line
r ¥ _ ipse Z + ¥ = i
acosat bsina"'l meets the ellipse ath =1 meet at the point

9
(-ae’oos’a, Ebi’sin'u) .
9. Prove that the loci of the point of intersection of normals at
the ends of focal chords of an ellipge are the two ellipses
a%y? (1+€3)3+ 0% (z+ae) (zFae?)=0.
3
10. Tangents to the ellipse z-:q- %:1 are drawn from any point
)
on the ellipse g + %,:4; prove that the normals at the points of
contact meet on the ellipse a3z%+ b*y3=1} (a?- b3)3.

11. Any t’angent to the rectangular hyperbola 4zy=ab meets the
ellipseg+%;=l in the points P and Q; prove that the normals at P
and Q meet on a fixed diameter.

12. Chords of an ellipse meet the major axis in the point whose
distanoe from the centre is ¢ \/ f—:—}_%; prove that the normals at its
ends meet on a circle.

13. From any point on the normal to the ellipse at the point
whose eccentric angle is a two other normals are drawn to it; prove
that the locus of the point of intersection of the corresponding
tangents is the curve

2y + bz sina+ay cosa=0.

14. Shew that the locus of the intersection of two perpendicular
normals to an ellipse is the curve

(6% 59) (234 y7) (@t + B3P = (a2 - 1) (a%y? - bR
]

15. ABC is a triangle insoribed in the ellipse ‘ai:+%,=1 having
each side parallel to the tangént at the opposite angular point; prove
that the normals at 4, B, and C meet at & point which lies on the
ellipse alad+ byt =} (a* - b2,

16. The normals at four points of an ellipse meet in a point (A, k).

Find the equations of the axes of the two parabolas which pass
through the four points. Prove that the angle between them is

2tan-‘% and that they are parallel to one or other of the equi-con-
jugates of the ellipse.
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17. Prove tha} the centre of mean position of the four points on
the ellipse §+%,=1, the normals at which pass through the point
(a, B), is the point

18. Prove that the product of the three normals drawn from any
point to a parabola, divided by the product of the two tangents from
the same point, is equal to one quarter of the latus rectam.

19. Prove that the conic 2aky=(2a- h)y*+4az? interseots the
part;‘l))oh. y2=4ax at the feet of the normals drawn to it from the point
(h, k).

20, From a goint (h, k) four normals are drawn to the rectangular
hyperbola zy =c2; prove that the centre of mean position of their feet

is the point g{, f—; , and that the four feet are such that each is the
orthocentre of the triangle formed by the other three.

Confocal Conics.
415, Def. Two conics are said to be confocal when
they have both foci common.
To find the equation to conics which are confocal with
the ellipse
z*
e + %: =1.. teeesenans (l).
All conics having the same foci have the same centre
and axes.

The equation to any conic having the same centre and
axes as the given conic is

a:’y’l .................

I+_E= ceeen (2).

The foci of (1) are at the points (=«/a”— 87, 0).
The foci of (2) are at the points (= /4 — B, 0).
These foci are the same if
A-B=a'-b,
t.e. if 4 —a*= B —b*= A (say).
S Ad=a*+ )\ and B=b+ A
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The equation (2) then becomes
o
FES RS i
which is therefore the required equation, the quantity A
determining the particular confocal.

1

416. For different values of \ to trace the conic given
by the equation
AN Q).
p S Wl - S RIS

First, let A be very great; then a’+ A and b*+A are
both very great and, the greater that A is, the more nearly
do these quantities approach to equality. A circle of
infinitely great radius is therefore a confocal of the
system. _

Let A gradually decrease from infinity to zero; the
semi-major axis »/a’+ A gradually decreases from infinity
to a, and the semi-minor axis from infinity to &, When A
is positive, the equation (1) therefore represents an ellipse
gradually decreasing in size from an infinite circle to
the standard ellipse

2.y 1.

AT ET
a b

This latter ellipse is marked 7 in the figure.

Next, let A gradually decrease from 0 to —3%. The
semi-major axis decreases from a to v/a’—b’, and the semi-
minor axis from b to 0.

For these values of A the confocal is still an ellipse,
which always lies within the ellipse 7; it gradually
decreases in size until, when A is a quantity very slightly
greater than —&% it is an extremely narrow ellipse very
nearly coinciding with the line SH, which joins the two
foci of all curves of the system.

Next, let A be less than —3*; the semi-minor axis
Nb*+ A now becomes imaginary and the curve is a hyper-
bola ; when X is very slightly less than — 3* the curveis a
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hyperbola very nearly coinciding with the straight lines
SX and HX'.

[As X passes through the value —&* it will be noted that
the confocal instantaneously changes from the line-ellipse
SH to the line-hyperbola SX and HX'.]

As X gets less and less, the semi-transverse axis /a®+ A
becomes less and less, so that the ends of the transverse
axis of the hyperbola gradually approach to C, and the
hyperbola widens out as in the figure.

‘When A=—a? the transverse axis of the hyperbola
vanishes, and the hyperbola degenerates into the infinite
double line YOY".

‘When X is less than — a? both semi-axes of the conic
become imaginary, and therefore the confocal becomes
wholly imaginary.

417. Through any point in the plame of a given conic

there can be drawn two conics confocal with it; also ons of
these is an ellipse and the other a hyperbola.

Let the equation to the given conic be
o

S A

and let the given point be (£, g).
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Any conic confocal with the given conic is
o s 1

m + m: .................. (l).
If this go through the point (f, g), we have
S, 9 :
FatEaC e (2).

This is a quadratic equation to determine A and there-
fore gives two values of A.

Put 3 + A=y, and hence
, @+ A=p+a'-b=p +a'd
The equation (2) then becomes
S
p+a’e’+;_l’
ie W +p(ae—f1-g") —ga’ =0 ......... 3).

On applying the criterion of Art. 1 we at once see that
the roots of this equation are both real

Also, since its last term is negative, the product of
these roots is negative, and therefore one value of p is
positive and the other is negative.

The two values of 4*+ A are therefore one positive and
the other negative. Similarly, the two values of a® + A can
be shewn to be both positive.

On substituting in (2) we thus obtain an ellipse and a
hyperbola.

418. Confocal conics cut at right angles.

Let the confocals be
& p 2y
By Wl s Wk Nl e Wl e v

and let them meet at the point (2, ¥').
The equations to the tangents at this point are

e vy w Yy
a’+)\,+5‘+)«,_l and P W S
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These cut at right angles if (Art 69)
= 8
@+X) (@ + A,) &+ )«,) (b' + A,) """ )
But, since (#/, %) is a common point of the two confocals,
we have " . o
m*%&-l and m\, Fea
By subtraction, we have

, 1 1 1 1
w’(a’+)«,_a’+)\,> 7 (b’+A,—b’+A,)=0’
s v o (2).
@)@ TR T EER) F )T
The condition (1) is therefore satisfied and hence the
two confocals cut at right angles.

‘Cor. From equation (2) it is clear that the quantltles
6"+ A, and 3"+ ), have opposite signs; for otherwise we
should have the sum of two positive quantities equal to
zero. Two confocals, therefore, which intersect, are one an
ellipse and the other a hyperbola.

t.e.

41’0. One conic and only ome conic, eonfocal with the comic
:—:+ %=1, can be drawn to touch a given straight line.
Let the equation to the given straight line be
ZeoBa+yYBinaA=D..cccrrrrrrininnnninnns (1).
Any confocal of the system is
A
atFx " BN
The straight line (1) touches (2) if
p*=(a?+ 1)) cos®a + (b3+2) sin? a (Art. 264),
t.e. if A=p?-a3cos?a — b?sinta.
This only gives one value for A and therefore there is only one
oonio of the form (2) which touches the straight line (1).
Algo A+ad=p*+ (a?-b%) sin?a=a real quanti The conic is
therefore real. : -

Lo eeein(@),
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EXAMPLES. XLVIL

1. Prove that the ;liﬂerenoe of the squares of the perpendiculars

drawn from the centre upon parallel tangents to two given confocal
oconics is constant.

2. Prove that the equation to the hyperbola drawn through the
point of the ellipse, whose eccentric angle is a, and which is confocal
with the ellipse, is

23 y?
2 Y g
oosla sinla

8. Prove that the locus of the points lying on a system of confocal
ellipses, which have the same ecoentric angle a, is & confocal hyperbola
whose asymptotes are inclined at an angle 2a.

4, Shew that the locus of the })oi.nt of contact of tangents drawn
from a given gi:t to a system of confocal conics is & oubie curve,
which passes ugh the given point and the foei.

If the given point be on the major axis, prove that the cubic
reduces to a circle.

5. Prove that the locus of the feet of the normals drawn from a
fixed point to a series of confocals is a cubic curve which passes
through the given point and the foci of the confocals.

8. A point P is taken on the conic whose equation is
z? ’ 1

atan="

such that the normal at it passes through a fixed point (k, &) ; prove

that P lies on the curve dad

z
vkt R ke

7. Two tangents at right angles to one another are drawn from
& point P, one to each of two confooal ellipses ; prove that P lies on
a fixed circle. Shew also that the line joining the points of contact is
biseoted by the line joining P to the common centre. .

8. From a given point a pair of tangents is drawn to each of a
given system of confocals; prove that the normals at the points of
contact meet on a straight line,

N )

éaclgl.ia mimtll?e ;f)em?::’:vhzﬁ: tmb::znf :f?he :onfgc’al‘snd o
..—z’__ + _!’_. =1:
a?+\ b

prove that the locus of such points is a straight line,
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10. Normals are drawn from a given point to each of a system of
oonfocal conics, and tangents at the feet of these normals; prove that
the locus of the middle points of the portions of these tangents
intercepted between the axes of the confocals is a straight line.

11. Prove that the locus of the pole of a given straight line with

respect to & series of confocals is a straight line which is the normal
to that confooal which the straight line touches.

12. A series of parallel tangents is drawn to a system of confocal
conics; prove that the loous of the points of contact is a rectangular
hyperbola.

Shew also that the locus of the vertices of these rectangular

bolas, for different directions of the tangents, is the curve

ri=c3%00820, where 3¢ is the distance between the foci of the
oonfocals.

18. The locus of the pole of any tangent to & confocal with
to any circle, whose centre is one of the foci, is obtained and found to
be a circle; prove that, if the circle corresponding to each confocal be
taken, they are all coaxal.

14. Prove that the two oonics

axd+3hzy + by?=1 and a'z?+ 2h'zy +byi=1
can be placed so a8 to be confoeal, if
(a-0)3+4h? (a’-0')2+4n7
(@-h)F ~ (@v-np

Curvature.

420. Circle of Curvature. Def. If P, Q, and R
be any three points on a conic section, one circle and only
one circle can be drawn to pass through them. Also this
circle is completely determined by the three points.

Let now the points @ and R move up to, and ultimately
coincide with, the point P; then the limiting position of
the above circle is called the circle of curvature at P; also
the radius of this circle is called the radius of curvature at
P, and its centre is called the centre of curvature at P.

421, Since the circle of curvature at P meets the
conic in three coincident points at P, it will cut the curve
in one other point 7. The line PP which is the line
joining P to the other point of intersection of the conic and
the circle of curvature is called the common chord of
curvature.
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‘We shewed, in Art. 400, that, if a circle and a conic
intersect in four points, the line joining one pair of points
of intersection and the line joining the other pair are
equally inclined to the axis. In our case, one pair of
points is two of the coincident points at P, and the line
joining them therefore the tangent at P ; the other pair of
points is the third point at P and the point P’, and the
line joining them the chord of curvature PP’. Hence the
tangent at P and the chord of cwrvature PP’ are, in any
conic, equally inclined to the axis,

422. Tofind the equation to the circle of curvature and
the length of the radius of curvature at any point (at’, 2at)
of the parabola y*= 4ax.

If §=0 be the equation to a conic, 77=0 the equation
to the tangent at the point P, whose coordinates are a#* and
2at, and L=0 the equation to any straight line passing
through P, we know, by Art. 384, that S+A.L.T=0 is
the equation to the conic section passing through three
coincident points at P and through the other point in which
L =0 meets §=0.

If A and Z be so chosen that this conicis a circle, it will
be the circle of curvature at P, and, by the last article, we
know that Z =0 will be equally inclined to the axis with
T=0.

In the case of a parabola
S=y*—4axr, and T'=ty~x—at’. (Art. 229.)

Also the equation to a line through (af, 2af) equally
inclined with 7’=0 to the axis is

t(y— 2at) + x —at*=0,
so that L=ty+x-3af
The equation to the circle of curvature is therefore
¥ —dax + A (ty —  — at) (ty + = — 3af’) = 0,

. 1
where 1+A2==A, me.)t——m.
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On subestituting this value of A, we have, as the required
equation,
2 + y* — 2ax (36 + 2) + 4ay? — 3at* =0,

i.e [#—a (2 + 3)] + [y + 208 = 4a® (1 + £)°.

The circle of curvature has therefore its centre at
the point (2a + 3at?, — 2af’) and its radius equal to

2a (1 + )L,

Cor. If S be the focus, we have SP equal to a + af, 80
that the radius of curvature is equal to g_,\/é'ai’

423. 7o JSind the equation to the circle of curvature at
the point. P (a cos ¢, bsin$) of the ellipse %5+ %y=1.

The tangent at the point P is

- oos ¢ +y ¥ gin ¢=1

The straight lme passing through P and equally inclined

with this line to the axis is
5% (2 a 008 ) ~ 222 (y _ b sin ) = 0,

: z _y - =
t.e acos¢ bsm4> cos 2¢=0.

The equation to the circle of curvature is therefore of
the form
o2 9 2z v ..

_+$_’_1+A|:acos¢+-l;sm¢—l]

Since it is a circle, the coefficients of «* and y* must be
equal, so that
cos’¢p 1 A sin? ¢
@ If [
bﬂ
= b cos® ¢ +algn'g’

;1,-4-)\

and therefore
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On substitution in (1), the equation to the circle of
curvature is

(b* cos® ¢ + a? sin’ ¢)( bl:"l)
+@-8)[Goow ¢ — Lsint ¢~ 28 (14 c0n 29)

+7/5i:¢(1—cos2¢)+0082¢]=0’
2.6 x’+y’_(aﬁ_bz) 2xc:s’¢_2y5;ns¢]

+ a* (cos® ¢ — 2 sin? @) — 4% (2 cos® ¢ — sin® ¢) =0,
The equation to the circle of curvature is then
ad = b® s .1 ad-b AL
{ — = oos 4:} + {y+ —3 oo ¢}
1n®
= (a®—b?? {cos ¢, su;’ 4’} — a?{cos® ¢ — 2 sin?® ¢}
+6"{2 cos® ¢ — sin® ¢}

, after some reduction.

_ (a?sin® ¢ + b* cos? ¢)°
- a’*
The centre is therefore the point whose coordinates are
(a’; » cos® ¢, o ; » sin® ¢) and whose radius is
(a® sin® ¢ + 8% cos? ¢)"

Cor. 1. If CD be the semi-diameter which is conju-
gate to CP, then D is the point (90° + ¢), so that its
coordinates are —asin¢ and bcos¢. (Art. 285.)

Hence CD? = a*sin? ¢ + b? cos? ¢,

cp?

and therefore the radius of curvature p = -

Cor. 2. If the point P have as coordinates 2’ and g’
then, since ' =a cos ¢ and ¥ = b sin ¢, the equation to the
circle of curvature is

at—b? . 9 a—b° ’_(a’+b’—m”-—y”)’
(=) + (v w) =g
L. 26
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Cor. 8. Inasimilar manner it may be shewn that the
equation to the circle of curvature at any point (<, y') of

the hyperbola :—:-g-:=lis
a*+ b ,.\? ad+8 ,\* (®—-b'"—2?—y")
e
. _(@+y"-a'+ b
- a’b? :

424. If a circle and an ellipse intersect in four points,
the sum of their eccentric angles is equal to an even
multiple of =. [Page 235, Ex. 18.]

If then the circle of curvature at a point P, whose
eccentric angle is 6, meet the curve again in @, whose
eccentric angle is ¢, three of these four points coincide at
P, so that three of these eccentric angles are equal to 6,
whilst the fourth is equal to ¢. We therefore have

30 + ¢ = an even multiple of = = 2n.
Hence, if ¢ be supposed given, i.e. if @ be given, we
2nwr—¢

3
Giving n in succession the values 1, 2, and 3, we see
2r—¢ 4r—¢ 6r—¢
that 0 equals g —3 » OF —g -
~ Hence the circles of curvature at the points, whose
r—¢ 4w—¢ and 6r—¢
—q T

have 0=

eccentric angles are 3~ —g » an 3 all
pass through the point whose eccentric angle is ¢.

Also since
273_¢+4r;¢+673_¢+¢=4r=an even multiple of =,
we see that the points m—¢ 4r—9¢ 67_4’, and ¢

3 3’ 3
all lie on a circle.



EVOLUTE OF A CURVE. 403

Hence through any pownt Q on an ellipse can be drawn
thres circles which are the circles of cwrvature at thres
points P,, P,, and P,. Also the four points P,, P,, P;, and
Q all lie on another circle.

425. Evolute of a Curve. The locus of the
centres of curvature at different points of a curve is called
the evolute of the curve.

426. Evolute of the parabola y*= 4ax.
~ Let (2, g) be the centre of curvature at the point (a#’, 2at)
of this curve.
Then £=a (2 + 3¢’) and §=—2a’. (Art. 422.)
’ S (8- 2a) =270’ =1L a7,
t.e. the locus of the centre of curvature is the curve

2Tay* = 4 (x - 2a)’.

This curve meets the axis of # in the point (2a, 0).

It also meets the parabola
where

27a’%x = (x — 2a)?,
t.e. where z=8a,
and therefore
y=x4/2a.

Hence it meets the parabola at

the points
(8a, = 4,/2%).

The curve is called a semi-
cubical parabola and could be shewn
to be of the shape of the dotted curve in the figure.

437, Evolute of the ellipse %+ %,=1.
If (£, 7) be the centre of curvature coﬁesponding to the
point (a cos ¢, b sin ¢) of the ellipse, we have

at—-b __a=b
a cos®’¢ and y=— 3

B= sin® ¢.

26—2
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Hence
(a8)* + (bg)= (@* - 8)} {cos" ¢ + sin” ¢} = (a* — B")".
Hence the locus of the point (£, ) is the curve
() + () =@,
This curve could be shewn to

be of the shape shewn in the figure
where

3_pe
CL=CL = )
a
3 _ pe
and CM=CM'= -
The equation to the evolute of s/
tl;)];e hyperbola would be found to ‘[Ll'

(ae)! — (By)* = a* + &),

428. Contact of different orders. If two conics,
or curves, touch, ¢.e. have two coincident points in common
they are said to have contact of the first order. The
tangent to a conic therefore has contact of the first order
with it.

If two conics have three coincident points in common,
they are said to have contact of the second order. The
circle of curvature of a conic therefore has contact of the
second order with it.

If two conics have four coincident points in common,
they are said to have contact of the third order. No
conics, which are not coincident, can have more than four
coincident points; for a conic is completely determined if
five points on it be given. Contact of the third order is
therefore all that two conics can have, and then they are
said to osculate one another.

Since a circle is completely determined when three
points on it are given we cannot, in general, obtain a circle
to have contact of a higher order than the second with a
given conic. The circle of curvature is therefore often called
the osculating circle,
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In general, one curve osculates another when it has the
highest possible order of contact with the second curve.

429. ZEquation to a conic osculating another conic.

If §=0 be the equation to a conic and 7'=0 the
tangent at any point of it, the conic § =AZ™ passes through
four coincident points of =0 at the point where 7'=0
touches it. (Art. 385, IV.)

Hence §=AT" is the equation to the required osculating
conic.

Bx. The equation of any oonic osculating the conic
azd+3hoy + by?— Bfy=0......ccooeocceevrrnnns (1)

az3 4 2hzy + by - Yy + My =0 ..ccoeerreeennnnnne @).
For the tangent to (1) at the origin is y=0.
If (2) be a parabola, we have h¥=a (b+ 1)), 8o that its equation is
(az+ hy)?=2afy.

If (2) be a rectangular hyperbola, we have a+b+A=0, and the
equation to the osculating rectangular hyperbola is

a(a* - y¥) +2hzy — 2fy =0.

at the origin is

BXAMPLES. XLVIIIL
1. If the normal at a point P of a parabola meet the directrix in
L, prove that the radius of curvature at P is equal to 2PL.
2. If p, and p, be the radii of curvature at the ends of a focal
chord oftﬁapua la, prove that
A g i=(20)71
8. PQ is the common chord of the parabola and its centre of

curvature at P; prove that the ordinate of Q is three times that of P,
and that the locus of the middle point of PQ is another parabola.

4, If p and p’ be the radii of curvature at the ends, P and D, of
oconjugate diametets of the ellipse, prove that
3_at+b?
4=
PA+p a’
and that the locus of the middle point of the line joining the centres
of curvature at P and D is

(az+ by + (az - by)¥ = (a2 - )1,
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5. O isthe centre of curvature at any point of an ellipse, and Q
and R are the feet of the other normals drawn from O; prove that the

loous of the intersection of tangents at Q and R is %1-:—::1,&11&
that the line QR is a normal to the ellipse

z__’+y_’_ a’b?

&t u= @y

8. If four normals be drawn to an ellipse from any point on the
evolute, prove that the locus of the centre of the rectangular hyperbola
through their feet is the curve

60

7. In general, prove that there are six points on an ellipse the
circles of curvature at which pass through a given point O, not on the
ellipsge. If O be on the ellipse, why is the number of circles of
curvature passing through it only four?

8. The circles of curvature at three points of an ellipgse meet in a
point P on the curve. Prove that (ﬂmthe normals at these three
points meet on the normal drawn at other end of the diameter
through P, and (2) the locus of these points of intersection for
different positians of P is the ellipse

4 (a%23+ b%%) =(a®- b9

9. Prove that the equation to the circle of curvature at any point

(', y') of the rectangular hyperbola z%—y?*=a? is
a3 (23 + y?) — 4z2" +dyy + 3a? (22 + y'?) =0.

10. Shew that the equation to the chord of curvature of the
rectangular hyperbola zy=c? at the point ““¢” is ty +t3s=c(1+¢9),
and that the centre of curvature is the point

1434 3+¢4
5@ S g ) .

Prove also that the locus of the pole of the chord of curvature is
the ourve r3=2¢3sin 26.

11. PQ is the normal at any point of a rectangular hyperbola and
meets the curve again in Q; the diameter through Q meets the curve
again in R ; shew that PR is the chord of curvature at P, and that
PQ is equal to the diameter of curvature at P.

12. Prove that the equation to the circle of curvature of the conio
az% ¥ 2hay +by®=2y at the origin is
a (22 +y?)=2y.
18. If two confocal conics intersect, prove that the centre of

ocurvature of either ourve at a point of intersection is the pole of the
tangent at that point with regard to the other curve.
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14. Shew that the equation to the g:nbola, ba oontact of the
third order with the rectangular hyperbola zy=c? at the point

(=)

is (z - yt3)2 - det (z+yt?) + 8c%2=0.
Prove also that its directrix bisects, and is perpendicular to, the
radius veotor of the hyperbola from the centre to the point of contact.

15. Prove that the equation to the parabola, which passes through
the origin and has ocontact of the second order with the parabola
y*=4az at the point (at3, 2at), is

(4z - 8ty)? + 4at? (3z - 2ty) =0,

16. Prove that the equation to the rectangular hyperbola, having
oo‘x;ta:: )of the third order with the parabola y3=4az at the point
(a t), is

T g Qtay — g3+ 20z (3+ 86) — 2asdy + a4 =0,

Prove also that the locus of the centres of these hyperbolas is an
equal parabola having the same axis and direotrix as the original
parabola,

17. Through every point of a circle is drawn the

rectangular
hyperbola of closest contact; prove that the centres of all these
hyperbolas lie on a concentrio circle of twice its radius,

18. A rectangular hyperbola is drawn to have contact of the third

order with the ellipse at g—:= 1; find its equation and prove that the

locus of its centre is the curve
L Y
adri) ate

Envelopes.

430, Consider any point P on a circle whose centre
is O and whose radius is a. The straight line through P
at right angles to OP is a tangent to the circle at P.
Conversely, if through O we draw any straight line OP of
length @, and if through the end P we draw a straight
line perpendicular to OP, this latter straight line touches,
or envelopes, a circle of radius @ and centre O, and this
circle is said to be the envelope of the straight lines drawn
in this manner.

Again, if S be the focus of a parabola, and PY be the
tangent at any point P of it meeting the tangent at the
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vertex in the point Y, then we know (Art. 211, ) that
SYP is a right angle. Conversely, if S be joined to any
point ¥ on a given line, and a straight line be drawn
through Y perpendicular to SY, this line, so drawn, always
touches, or envelopes, a parabola whose focus is § and such
that the given line is the tangent at its vertex.

431. Envelope. Def. The curve which is touehed
by each of a series of lines, which are all drawn to satisfy
some given condition, is called the Envelope of these
lines.

As an example, consider the series of straight lines
which are drawn so that each of them cuts off from a pair
of fixed straight lines a triangle of constant area.

‘We know (Art. 330) that any tangent to a hyperbola
always cuts off a triangle of constant area from its asymp-
totes.

Conversely, we conclude that, if a variable straight line
cut off a constant area from two given straight lines, it
always touches a hyperbola whose asymptotes are the two
given straight lines, .e. that its envelope is a hyperbola.

432. If the equation to amy curve involve a variable.
parameter, in the first degree only, the curve always passes
through a fixed point or points.

For if A be the variable parameter, the equation to the
curve can be written in the form S+AS'=0, and this
equation is always satisfied by the points which satisfy
8=0 and §8’'=0, z.e the curve always passes through the
point, or points, of intersection of §=0 and §’= 0 [compare
Art. 97]

438. Curve touched by a variable straight line whose
equation tnvolves, in the second degree, a variable parameter.
As an example, let us find the envelope of the straight
lines given by the equation
me—my +a=0....ccoe.ceiine. (1),
where m is a quantity which, by its variation, gives the
series of straight lines.
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If (1) pass through the fixed point (A, k), we have
' mh—mE+a=0.....ccc0vrennnnn. ().
This is an equation giving the values of m correspond-
ing to the straight lines of the series which pass through

the point (A, k). There can therefore be drawn two
straight lines from (%, &) to touch the required envelope.

As (h, k) moves nearer and nearer to the required
envelope these two tangents approach more and more
nearly to coincidence, until, when (A, %) is taken on the
envelope, the two tangents coincide.

Conversely, if the two tangents given by (2) coincide,
the point (A, &) lies on the envelope.

Now the roots of (2) are equal if 4*= 4ah,
so that the locus of (A, k), i.e. the required envelope, is the
parabola y* = 4az.

Hence, more simply, the envelope of the straight line (1)
is the curve whose equation is obtained by writing down
the condition that the equation (1), considered as a quad-
ratic equation in m, may have equal roots.

By writing (1) in the form
_ a
Yy=me+ a,

it is clear that it always touches the parabola y* = 4ax.

In the next article we shall apply this method to the
general case.

434. To find the envelope of a straight line whose
equation involves, in the second degree, a variable paramaeter.

The equation to the straight line is of the form

MP+AQ+R=0 ...ccccvvvnnnnnnne 1),

where A is a variable parameter and P, @, and R are
expressions of the first degree in 2 and y.

Equation (1) may be looked upon as an equation
giving the two values of A corresponding to any given
point 7'
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Through this given point two straight lines to touch the
required envelope may therefore be drawn.

If the point 7" be taken on the required envelope, the
two tangents that can be drawn from it coalesce into the
one tangent at 7" to the envelope.

Conversely, if the two straight lines given by (1)
coincide, the resulting condition will give us the equation
to the envelope.

But the condition that (1) shall have equal roots is

This is therefore the equation to the required envelope.

Since P, @, and R are all expressions of the first degree,
the equation (2) is, in general, an equation of the second
degree, and hence, in general, represents a conic section.

The envelope of any straight line, whose equation
contains an arbitrary parameter and square thereof, is
therefore always a conic.

435. The method of the previous article holds even if
P, Q, and R be not necessarily linear expressions. It
follows that the envelope of any family of curves, whose
equation contains a variable parameter A, in the second
degree, is found by writing down the condition that the
equation, considered as an equation in A, may have equal
roots.

486. Bx. 1. Find the envelope of the straight line which cuts off
Jfrom two given straight lines a triangle of constant area.

Let the given straight lines be taken as the axes of coordinates and
let them be inclined at an angle w.

The equation to a straight line cutting off intercepts fand g from
the axes is

i .
f+g 1.... (1)

If the area of the triangle out off be constant, we have
4f.g .8in w=const.,
i.e. Sg=oonst.=K3..........covvirruirnnennnns (2).

On substitution for g in (1), the equation to the straight line
becomes [ -fK3+ K3%z=0.
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By the last article, the envelope of this line, for different values of
J, i8 given by the equation

(-K%3=4. K3zy,
K3
i.e. TY= '“4" .
The result is therefore a hyperbola whose asymptotes coincide with
the axes of coordinates.

Bx. 3. Find the envelope of the straight line which is such that
the product of the perpendiculars drawn to it from two fized points is
constant. .

Take the middle point of the line joining the two fixed points as
the origin, the line joining them as the axis of z, and let the two
points be (d, 0) and (-d, 0).

Let the variable straight line have as equation

y=mz+c.
The eondition then gives
md+c -md+e
p— =oonstant=4
Jivm < JTrmd !
80 that 2 —midt=A4 (1+md).

The equation to the variable straight line is then
y-me=c=\J AT P T L.
Or, on squaring,
m3 (22 - 4 - d%) - 2may + (y2 - 4)=0.
By Art. 485, the envelope of this is
(2zyP=4 (s~ 4 - ) (47 - A),
= ¥
irata=t
This is a conio section whose axes are the axes of coordinates and
whose foci are the two given points.

Bx. 8. Find the envelope of chords of an ellipse the tangents at the
end of which intersect at right angles.

. 23yt
Lettheelhpsebe-a—,+%,=1. »
If the tangents interseot at right angles, their point of intersection
P maust lie on the director circle, and henoe its coordinates must be of
the form (c 00s 6, ¢ sin 6), where ¢ =,/a7+ b%.

The chord is then the polar of P with respect to the ellipse, and
henoe its equation is

i.e.

z.c0080 y.ceing_,
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Let t.‘—_’t&n%. Then since
]
- 2 _
I 10 e B
0 14+ T14®
2 _
. 1+ tan 3
the equation to the line is
czl-t? oy 3t _
a?l+3’ BBL1+8

. oz ey cz
3.C. l’[1+a—’ -2t = + (1—;2)=0,

cos =

1,

bt
The envelope of this is (Art. 484),

(-2%?’ ’=4(1+“’7’;) (1-:—‘: ,

233 g
T

i.e, -—:;— + —g— =1.

. " a’+b? a4+t
inoe —%— — —2 _ _—a3- : . .
Since p e a3- b3, this equation represents a conic

confocal with the given one.

=1,

Bx. 4. The normals at four points of an ellipse meet in a point 3
if the line joining one pair of these points pass through a fized point,
prove that the line joining the other pair envelopes a parabola which
touches the azes.

Let the equation to the ellipse be
z 93 1
AT =l (1),
and let the equation to the two pairs of lines through the points be
IBHMY=L.eoorenirerieeecrereresises @),
and Lz+my=1
By Art. 412, Cor. (1), we then have
1 1
u,=-a—, and m iy~ EOTE R (4).
If the straight line (3) pass through the fixed point (f, g), we have
Lf+mg=1,
so that, by (4) L9
» OF % ol otm
and therefore l=- £ _mb?

a?mbi+g’
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If this value of ! be substituted in (2), it becomes
miatDiy + m(atgy - b3z - a%b?) - a9y =0,

the envelope of which is
(a%gy — b3z — a®?)?= — 4a%g . a%by,
i.e. (a%gy — b¥fz)2+ 2433 bz + algy) + a'¥=0 ........... (5)-

This is a parabola since the terms of the second degree form a
perfect square. Also, putting in sucocession z and y equal to zero, we
get perfect squares, so that the parabola touches both axes.

437. To find the envelope of the straight line
le+my+n=0............ceuenn (1),

where the quantities I, m, and n are comnnected by the
relation
al? + bm? + cn? + 2fmn + 2gnl + 2hlm =0...... (2).

[Equation (1) contains two independent pa.ra.meters%
and '—'—‘, whilst (2) is- an equation connecting them. We

could therefore solve (2) to g1ve i in terms of ; on sub-

stituting in 31) we should then ha.ve an equatlon containing
one independent parameter and its envelope could then be
found.

It is easier, however, to proceed as follows. ]

Eliminating = between (1) and (2), we see that the
equation to the straight line may be written in the form

al? + bm? + ¢ (ke + my)* — 2 (fm + gl) (ke + my) + 2him = 0,
i.e (a—2g:c+cx’)('-i—‘)’+2(czy—gy—f:c+h)£
+@®-2fy+ecy?)=0.
The envelope of this is, by Art. 435,
(oy — gy ~fz + k) = (a — 29 + ca®) (b - 2.fy + cy’),
. %.6., on reduction,
@ (be —f) +y* (ca—g°) + 2zy (fg —ch)
+2x(fh—bg)+2y(gh—af) +ab—A*=0
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The envelope is therefore a-conic section.
Cor. The envelope is a parabola if

(fg — ch)*=(be - f?) (ca - g°),
e if  c=0, or if abe+ fgh—af?—bg*—ch*=0.

488. Bx. Find the envelope of all chords of the parabola y?>=4az
which subtend a given angle a at the vertez.

Any straight line is
le+my+n=0....c.cccruvirrrerriiirrnnnnns 1).

The lines joining the origin to its intersections with the parabola
are, (by Art. 122), ny’l= - 4az (lz +my),
i.e. " ny?+4amay+4alz?=0.

If « be the angle between these lines, we have
_3./I%mi—dain
T ntdal
i.e. 16a%P — 1642 cot? am?+ n? + 8aln (1 + 2 cot?a) =0.

‘With this condition the envelope of (1) is, by the last article,

23(—16a3cot? a) + y2[16a3 - (4a + 8a cot? a)?]
+2z . 16a*cot? a (4a + 8a cot?a) — 256at cot?a=0,

tana

i.e. the ellipse
[z -4a(1+200t?a) P+ 4 cosec? a . y3=64 cot? a . cosec? a.

EXAMPLES. XLIX.

Find the envelope of the straight line §+ %:1 when
1. aa+bdB=c. 2. a+B+a/dd+Fi=c.
b a2
3. o + E’=L
Find the envelope of a straight line which moves go that

4, the sum of the intercepts made by it on two given straight
lines i8 constant.

5. the sum of the squares of the perpendioulars drawn to it from
two given points is constant.

8. the difference of these squares is constant.

7. Find the envelope of the straight line whose equation is
azcos 0+ by sin 6=c.
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8. Circles are described touching each of two given straight lines;
prove that the polars of a given point with respect to these circles all
touch a parabola.

9. From any point P on a parabola perpendiculars PM and PN
are drawn to the axis and tangent at the vertex; prove that the
envelope of MN is another parabola.

10. Shew that the envelope of the chord which is common to the
parabola y2=4az and its circle of curvature is the parabola

y3+12az=0.

11. Perpendiculars are drawn to the tangents to the parabola
y3=4az at the points where they meet the straight line z=b; prove
that they envelope another parabola having the same foous.

12. A variable tangent to a given parabola cuts a fixed tangent in
the point 4; prove that the envelope of the straight line through 4
perpendicular to the variable tangent is another parabola.

13. Shew that the envelope of chords of a parabola the tangents
at the ends of which meet at a constant angle is, in general an ellipse.

14. A given parabola slides between two axes at right angles;.
prove that the envelope of its latus rectam is a fixed circle.

15. Prove that the envelope of chords of an ellipse which subtend
a right angle at its centre is a concentric circle.

16. If the lines joining any point P on an ellipse to the foci meet
the curve again in Q and R, prove that the envelope of the line QR is
the concentric and coaxal ellipse

23 P 1+e’)’_1

amB\1-a

17. Prove that the envelope of chords of the rectangular hyperbola
zy=a3, which subtend a constant angle a at the point (2, ) on the
curve, is the hyperbola

232"+ yy3=2a%2y (1 + 2 cot? a) — 4a* cosec? a.

18. Chords of a conic are drawn subtending a right angle at a
fixed point O. Prove that their envelope is a conic whose focus is O
and whose directrix is the polar of O with respeot to the original conic.

19. Shew that the envelope of the polars of a fixed point O with
respect to a system of confocal conics, whose ocentre is C, is a parabola
having CO as directrix.

20. A given straight line meets one of a system of confooal conics
in P and Q, and RS is the line joining the feet of the other two
normals drawn from the point of intersection of the normals at P and
Q; prove that the envelope of RS is a parabola touching the axes.
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21. ABCD is a rectangular sheet of paper, and it is folded over so
that C lies on the side AB; prove that the envelope of the crease so
formed is a parabola, whose focus is the initial position of C.

22. A cirole, whose centre is 4, is traced on a sheet of pag and
any point B is taken on the paper. If the paper be folded so that the
circumference of the circle passes through B, prove that the envelope
of the crease so formed is a conic whose foci are 4 and B,

23. In the conic % =1-ecosd find the envelope of chords which
subtend a constant angle 2a at the focus.

924, Circles are deseribed on chords of the parabola y?=4az, which
are parallel to the straight line Iz +my =0, as diameters; prove that
they envelope the parabola

(ly + 2ma)*=4a (P +m?) (z+ a).

25. Prove that the envelope of the polar of any point on the circle
(z+a)?+ (y + b)*=k? with respect to the circle 23+ y3=c? is the conic

(2 +y%) = (az+ by +c?)*
26. Chords of the conic -f;-:l—eoose are drawn passing through

the origin and on these circles as diameters circles are described.
Shew that the envelope of these circles is the two circles

! (l—+eooso)=ls=e.
r\r
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k+l+m ' k+l+m *

II. (Pages 18, 19.)
10. 2. L 3. 29. 4. 2ae.
al. 6. mm%;%sh%;ﬁdﬂ%;¢s.

a? (mg — mg) (mg —m,) (my —my).
a? (mg — my) (mg —m,) (my —my).
a2 (mg — m3) (mg — my) (m — my)-mymgmy.
203. 14, 96.

IIT. (Pages 22, 23.)
2,/6. 13. J79. 14. \/7a. 16. 1(8-84/3).
W 18 ity 95. r=a. 26, 0=a.
r=2a0080. 28. rcos20=2asinb. 29. rcosf=2asin?4.
r3=a%cos 260. 31. 2?+yl=al. 32. y=maz.
23+ y?=az. 84, (*+yYP=4a’z%
(2% +y*)}=a? (22 - y9). 36. 2y=a’ 87. a*-yi=ad.
y3+4ax=4a3. 39. 4(z*+3%) (B+y?+az)=a%y
28 - 8zyd+ Bz — y3=bkzy.
L. - 27
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IV. (Page 30.)
2az +k3=0. 9. (n?-1)(2?+y3+ a?) +2az (n?+1)=0.
478 (c3 - 4a?) + 4c¥%? = (c? - 4a?). 11. (6a-2c)z=at-c2
yi-4y - 22+ 5=0. 13. 4y+2z+3=0. 14, z+y="T.
y=2z. 16. y=38a. 17. 1522-y342az=as.
22+ y=3. 19, z'+y*=4y.
822+ 8y3+ 62 - 36y +27=0. T2l =%yl

23+ 2ay =al,
(1) 422+ 8y3+2ay =a?; (2) z*- 3y +8ay=4al.

V. (Pages 41, 42) 3
y=z+1. 2, z-y-5=0. 3. z-yJ3-23=0. |

by -8z +15=0. 5. 2z+8y=6. 6. 6z-5y+30=0. |
(1) z+y=11; Q) y-z=1. 8. z+y+1=0; z-y=38.

Yy’ + 2y =22y 10. 20y -9z=96. 15. z+y=0.
y-z=1. 17. 7y+10z=11.

az - by=ab. 19, (a-2b)z-by+b*+2ab-at=0.

Y (t+t) - 2z=2at;t,. 21, tty+z=a(t,+t,).

Z008% (¢, +¢g) +y 8in } (¢ + pg) =a cos § (¢, ~ ¢y).
f(:os‘#‘—-;d”+%sin—'l";‘#’=coa""——;"S". ‘
a

52008 3 (1~ $5) — 2y 6in § (¢ + bg) = ab 008 } (¢, + ).
z+3y+7=0; y-8z=1; y+Tz=11.

2-8y=4; y-3z=1; z+2=2,
y(@'-a)-z (' -b)=a'b-ab’; y(a' - a)+z (b’ - b)=a’b’ - ab.
2ay - 2b'z=ab - a’t’, 29. y=6z; 2y=238a.

VL (Pages 48, 49, .
90°. 2. tan~133. 3. tan-14. 4, 60°.

. 4m2n? a1
tan~l ZE0 . 8. tenl= . 7. tan1(2).

4y +32=18. 9. Ty-8z=118. 10. 4y+11z=10.
z+4y +16=0. 12. ar+by=al,

2z (a—a')+2y (b-b')=a2— a2+ b2 b2,

yz' —zy’'=0; alzy’ - Vz'y=(a®-b?) 2'y’; az’' —yy' =z -y
121y - 88z =371; 83y - 24x=1043.

z=3; y=4; 43. 19. 2=0; y+,/3z=0.
y=Fk; (1-m?) (y-k)=2m (=~ h).

tan~13§; 92 - Ty=1; Tz+9y="173.
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VII. (Pages 53, 54.)
43. 2. 2%. 3. 6. 4,

acos} (a - p). 8. c_#dm’

o vasm, o 1L 32+,

VIII. (Pages 61-65.)
-11 41 ab ab
(79"2—9 : 2. («m*m)'

e * ()

{acos} (¢, +¢g) sec’ (¢;— o), asing (¢, +¢;)se0d (4, - o))}
a®-v) 2V 130
( b+0 b+b’) 8. 7z

y=a; y=4z +8a, 9. (1,1); 45°.

. (§,2); tan™160. 11. (-1, -8); (3,1); (5, 3).

(2, 1); tan=1 4. 13. 45°; (-5,8); z-8y=9; 2z-y=8.
3and -4 19. m, (a3 ag)+my(as— a)) +my (a; - ag) =0.
(-4, -3). 21, (H,-1%- 23, 48z-29y=T1,
z-y=11. 25. y=3. 26. y==.

.. a*y—br=ab(a-D). 28. 3z+4y=6a. 29. z+y+2=0.

287 +23y=11. 31, 13z-23y=64.
A:c+By+C+X(A’a:+B’y+C’)=0where)\is
4 Ba+C and (4) -

4% +By'+C
-7 @ -3 ® -mio 7

A'2 +By' +C°

. y=2; z=6. 38. 99z +T7Ty+71=0; Tz -9y - 37=0,

z-2y+1=0; 2z+y=3.

z(202-38)+y (W2-1)=442-5;
z(24/2+8)+y (W2+1)=44/2+6.

(¥ ) (m+m) + (2 - a) (1 - mm)=0;

(y - b) (1 ~mm') - (z - a) (m+m')=0.

83z +9y=381; 112z 64y +141=0; Ty —x=18.

. 2 (3+N1T)+y (5+4/17)=16+4,/17;

z(4+4/10) +y (2+4/10)=4 /10 +12;

(2 /32 -8.4/5)+y (\/34- 54/5)=6 /32~ 15 ,/5.
A(y-k)-B(z—-h)==+(4z+By+C).

At an angle of 15° or 75° to the axis of z.

27—2
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IX. (Pages 72, 73.)
M w2 @) 1. 2. tan 203,
tan—? n +it&n w)

y=0, y=z-a, z=2a, y=2a, y=z+a, =0, y=z, z=a, and
y=a, where a is the length of a side.

y (6—-4/3)+z (84/8-2)=23-9./3. 11. §.
10y-11z+1=0; 8 /111
X. (Pages 78—80.)
Py W5 21565\ 86 5'7J5—H' ;i
( i20 * 120 )} 120 ° 7. & )i

{e+./10 2+J10}, (6-,,/10 2—,,/10). (S-JIO 16+J10)

(% 9), (2,12), (12,2), and (-3, -3); 34/2, 44/2, 44/2, and 6./2.

(-184, 19%). 11. 4. 12. 73 15. &
3
1;_:. 15. 3(b-c)(c—a)(a-b).

a3 (mg — my) (my —my) (my - m:)—2"a’m-’ma’

& 8-

10y +822+48=0; 262+29y+5=0; y=5z+2; 52z+80y=4T.

. (4+3J8, +V38); (4+34/3, §+14/3)

XI. (Pages 86—8T.) .

23+ 2zy oot a -y =al. 2. y24+Nzi=Nad
(m+1)z=(m-1)a. 4, (m+n)(22+y?+a®)-2az(m-n)=c.
z+y=cseo’;—'. 6. z—y=dooseo’%’.
z +y=2ccosec w. 8. y-2x=2ccosecw.
2+ 22y 008 w + y3=4¢? coseo? w.
(2% +y?) 008 w + 2y (1 +008' w) =z (a cos w + b) +y (b cos w+a).
z (m+cos w) +y (1 +m o008 w)=0.
@) z+y-a-b=0;
(i) y=z. 19. A straight line.
A circle, centre O. 25. A straight line,
If P be the point (k, k), the equation to the locus of S is

h k

;+§=l.
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XII. (Page 94.)
(z-8y)(z-4y)=0; tan— 5. 2. (22-11y)(2z-y)=0; tan~' 4.
(I1z-+2y) (8= - Ty)=0; tan™'§}. 4 z=1; z=2; z=8.

y=%4. 6. (y+4z)(y—22)(y - 82)=0; tan™!(-§); tan"1 (3).
z(1-8in6)+ycosd=0; z(1+s8inb)+yocosd=0; 6.
ysind+z0080=+z \/cos 26 ; tan~? (cosec 8 \/cos 26).

1202 Toy ~12y%=0;  Tlat+9day-Tly=0;  22-y?=0;

Z’—y’:O.

XIII. (Pages 98, 99.)
(3, —4%); 45° 2. (2,1); tan13. 3, (-1, —4§); 90°
(-1,1); tan-18. . -156. 7. 2. 8 -10or —174.
-12. 10. 6. 11. 6. 12. 14. 13. -3.
% or 12, 16. (i) c(a+b)=0; (ii) e=0, or ac=bd.
by +6x=56 ; by - 6z=14.

XV. (Page 112.)
(1) y?=47"; (2) 23+y"2=6.
(1) 27 +y?=2az'; (2) 22 +y =2cy.
(a-b)? (22 +y"?)=a%?
(1) 22y’ +a3=0; 923+ 26y7=225; z'4+y"=1.
23 +y2=r3; 22 -y?=ac08 2a. 6. 27-4dy?=q2

tan-! g i —C+AD+ B
XVI. (Page 117.)

22" - \/6y’ +1=0. 2. z74,/3zy'=1. 3. 2%+yn=8,
y"2=42' cosec? a.
XVII. (Pages 123—125.)
D +y’+22-4y=4. 2. 2+y3+10z+12y=39.
z*+y? - 2az + 2by =2ab. 4, 23493+ 2azx+2by +263=0,
k
@4); V6L 8. (8 1); }J/I5. 1(TQ;§L
— ¢ me
9, - 1) N+ 9. (:/_f-ﬁ, m), c.
1522+ 16y? — 94z + 18y + 556 =0.
b(@?+y? - a%) =z (b*+1* - a?). 15. z*+y*-az-by=0.
2 +y? - 22z - 4y +256=0. 17. 2*+y?-5z-y+4=0.
822+ 3y? — 29z — 19y + 56 =0.

b (22+93) - (a®+b%) 2+ (a - b) (a3 +0?) =0.
23+y3- 8z - 44 =0,



vi

22.

23.
25.

27.

30.
3L

33.

® o o

[
= o

14,
15.
16.
17.
19.

10.
12,
18,
23.

COORDINATE GEOMETRY.

a?+ b3 a?+4b?
axb (z+y)=0; a¥b s
224 y?— hz— ky=0. 24, 2+y3+2./a7— bP=0".
23 4+y% - 102 - 10y + 26 =0. 26. 2%+y?—2az-2ay +a?=0.
23+y%+2 (5% \/12) (2 +y) +87+10 ,/12=0.
22+ 92 -6z +4y+9=0. 29. b(z*+y%) =z (B3+c?).
22+ y3%6,/2y - 62+ 9=0.
22+y2-32+2=0; 222+ 2y - bz — \/3y+8=0;

22%+ 2y - Tz — /8y + 6 =0.
(@ +21+ (y + 13)2=6652, 34. 8®+8y’- 2523y +18=0.
2 +yi=a+8?; 284472 (a+b)2+2(a—b)y+a?+b2=0.

224y?-

XVIIL. (Pages 134, 135.)

5z - 12y =152, 2. 24z+10y+151=0.
z+2y=£2,/5. 4 z+Y+g+Y=+/5/F+—c.
(—ﬁ, '7%). 6. c=a; (0, d). 7. Yes.
k=40 or - 10. 9. acos?a+bsinlas /a7t b2sinta.
Aa+Bb+C= ke \J TR, '

(1) y=mzxa /1+m; (2) my+z==%a, /I+ms;

(8) azty /BB —ai=ab; (4) z+y=ay2.

a?h?
2./m- TR 13. 2+y2+\/2a2=0; 2%+y2+,/2ay=0.

c=b-am; c=b-am+ /(T+m?) (a*+09).

#*+y?- 62— 8y +3§3=0. :

2?+y? -2z - 2cy + ¢3=0, where 2c=a+ b=+ T+ bR,

522+ 5y? — 10z + 30y + 49=0. 18. 23+y%-2cx-2cy +c2=0.
(x -2+ (y - h)2=13, 20. 2*+33-2az - 28y =0.

XIX. (Pages 144, 145,

z+2y=17. 2. 8z-2=11. 3. z=0.
23z + 5y ="5T7. 5. by-ar=a2 6. (5, 10).
& - %) 8. (1, -2). 9. 3, -¥-
(—2a, —2b). 11. (6, —28).

8y-20=13; (-3, 3%). 13, (2,-1). 14, 2%+y?=2a2
3v46. 19, 9. 20, A/2a7+2ab15R. 21, (32, 2); 3.
(1) 282%+33ay — 28y - 716z — 195y + 4225 =0 ;

(2) 1282% - 64zy + 3y2 - 6642 + 226y + 763 =0,
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XX, (Pages 147, 148.)
(} BT B, ta.n"lg) .

72— 2ra cosec a . co8 (0 — a) +a%cot? a =0, r=2a8inf.
12— r[a cos (0 — a)+ b cos (6 — 8)]+ ab cos (a — 8) =0.
b3+ 2ac=1.

XXI. (Page 149.)

3
30°; (8-6./3, 12-44/3); \/4T—24,/3.
(g—foos«n f—goosw). J+g - 2fgeosw

sinfw ' sinlw /'’ sinw °
2344/ 20y +y3 - 2 (4+3 ,/2) - 2y (3+/2) +3(20/2 ~ 1) =0.
23+2y +y3+11lz+ 13y +13=0.
(z-2)(z-2")+ly-¥) (y-y") +oosw[(z - 2') (y - ¥")

+(z-2") (y-y)1=0.

XXTI. (Pages 156—159.)

e (R V), BB

A circle. 5. A circle. 8. A cirdle,
a?sin? w . sy

22+ y? - 2zy 608 w= — the given radii being the axes.

A cirale. 12. A circle.

‘1) Acircle; (2) A circle; (3) The polar of O.
The curve r=a+acos 8, the fixed point O being the origin and
the centre of the circle on the initial line.
The same circle in each case.
2ab+ \Ja3+ b2, 85. anf1f; z=4a; 63z+16y+100a=0.
(i) 2=0, 8z+4y=10, y=4, and 8y=4xz. :
(i) y=mz+c o/T+m?, where
m= +(b+e) or =(b-c)
Jai— b+’ ,\/a’—(b—c)’.

XXTII. (Pages 164, 165.)

822+ 8y?% - 8x + 29y =0. 4, 15z-11y=144.
z+10y=2. 6. 6z-Ty+12=0. 7. (-1 -3).
(8%, 33)- 11, (A+1)(23+y%) + 2\ (2 +2y) =4+ 6\

(y - z)*=0.
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XXIV. (Pages 172, 173.)
z3-y2 4+ 2mzy =c. 12. k(2*+y?)+(a—c)y —ck=0.
23 +y2-cz - by +a?=0. 14, «*+y%-16z-18y-4=0.
XXV. (Pages 178, 179.)
(T + 6y)? - 570z + 750y + 2100=0.
(az — by)? - 2a%z — 2b% + a* + a?b®+ b4=0.
(-1,2); y=2; 4; (0, 2). 4. (4 9); ==4; 3; (4, 4).
(3) ==0s 25 0. 6 (L2 y=2; 4 @2
(i) 8; (@) 4 9. (2,6). 11, y=-2=; y-12=m(z-24).
B_C B_4_¢
(__241 , -B); z=—a 15. i=4az.
XXVI. (Pages 185—187.)
4y=38x+12; 4dx+3y=384. 2. 4y-z=24; 4x+y=108.
y-z=8; y+z=9; z+y+8=0; z-y=9.
y=z; z+y=4a; y+z=0; z-y=4a.

dy=z+28; (28, 14). 6. (g 3‘% .
y+22+1=0; (§, -2); 2y==+8; (8, 8).
Ga,2v80); (5, -22a). 0. dy=tusd; dy=ss36.
(5/52+1a, a.,/2~/5—_+-§); (3a, 24/8a).
vy +a¥z+atbi=0. 15. x==0.

XXVII. (Pages 197, 198.)
42 4+8y+1=0, 5. 56y=25.

XXVIL (Pages 203—205.)

. Take the general equation to the circle and introduce the

condition that the point (at3, 2at) lies on it; the sum of the
roots of the resulting equation in ¢ is then found to be zero.
It can be shewn that the normals at the points “¢,” and *¢;”
meet on the parabola when ?;t,=2; then use the previous
example,

XXIX. (Pages 209—211.)
y=bz. 2. czx=a. 3. y=ad.
y=(z-a)tan 2a. 5. y*-Mz?=2aaz.
2?=p?[(z-a)? +y7]. 19. y*=2a(z-a).
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y* - ky=3a (z - h). 21, y*(y*- 2az+4a%) +8at=0.
(8a%+y? - 2az)? tand a =164 (4az - y3).

y*+4ay®(a - 7) - 162’z +-a*P=0.

The parabola y2=2a (z + 2a).

XXX, (Pages 214—216.)
yi=a(z-a), 2. yi=daz. 8. 27ay?=(2z - a)(z - 5a)3.
A parabola. 5. A straight line,
27ay? - 4 (z — 2a)*=constant.
A straight line, itself a normal.

XXXII. (Pages 234, 235.)
(«) 823+5y2=82; (B) 82%+Ty?=115.
2078+ 86y7=405. 3, 29+2y3=100. 4, Ba%+9y?=1162.

M %5 48 (25V6.0); @) 45 1B O, 2NE);

(8) 35 §; (0,5)and (0, 1).

¥ . Te'+%y+Ty'+10s-10y+7=0. 8. Without.

o-+4y/3y=248; 11z 4,/8y=24,/3; 7 and 13.
(0 tant 2; (3) tan-1 \/ 2, @ 4.

2y
oty

=4,
b .

XXXIII. (Pages 245—248.)
z+4+3y=56; 9z-8y-5=0.
25z 46y =137; 6x— 25y +20=0.
2zyfTLdy=16; *dzxy/T={JT7.

y=38£33/148; (£ /65, = /195).
Use Arts. 145 and 260.

XXXIV. (Pages 262—264.)
z+2=4. 2. 2z2-Ty+8=0; (-3, -%)-
8z +8y=9; 2z=3y.
923 - 24y — 4y + 30z + 40y - 55 =0.
aly +v22=0; a’y—d*%=0; a’y+b%2=0; ay+bz=0,

XXXV. (Pages 268—270.)
23— 22y oot 20 — y2=a? - b2, 2. ox?-2y=ca.
@ (22 - a?)2=4 (032 + a%y? - a%?).
A (23- a3)2=2 (z%3+ B322 + a%y? - a%?).
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(234 y3 - a3 - b?)3=4 oot? a (b2 + a%y® - a?b?).

ay=bz tan a. 7. b23+a?yi=4a%"
b423 + aty?= a3 (a2 + b7). 9. b2+ ady?=2a%y.
(0222 + a%y3 )P =c? (b2? + a%y?).

(a3+ b?) (b2 + a2y?)2 =a%? (b4a3 + aty?).

b%z (2 - k) +a?y (y - k)=0.

c2a%03 (6322 + a%y?) + (V%23 + a%y? - 1) (b2 + aty®)=0.

(D322 + a%y?)?=a%* (22 + ).

ath (22 + y?) = (a? + b%) (%23 +aly?)*.

If the chords be PK and PK’, let the equation to KK’ be
y=mz+c; transform the origin to P and, by means of Art. 122,
find the condition that the angle KPK" is a right angle; substi-

tute for ¢ in the equation to KK’, and find the point of inter-
section of KK’ and the normal at P. See also Art. 404.

XXXVI (Pages 282—284.)

1622 - 9y2=36. 2. 2522 -144y2=900.

6523 — 36y2=441. 4, 2?-y2=32.

6, 4, (+4/13, 0), 23. 6. 3z%-y?=3al.
Ty?+24zy - 24az — 6ay + 16a%2=0; ( - g, a); 122 - 9y + 29a=0.
(5, —32). 9. 24y-30z==+,/161.
y=*~”*Jm; (a’-l-b’),\/a"—f'b—z. N

9y =32z. 16. 125z- 48y =481,

(1) b42?+asy?=a%? (b3 -a?); (2) r=a. s-:%b’:;
(3) 2°(a?+20%) - ay? - 2alez +a* (a? - %) =0.

XXXVII. (Pages 295, 296.)
At the points (a, +b4/2).
(2z+y+2)(z+2y+1)=0, (2z+y+2) (z+2y+1)=const.
822+ 10xy +8y3+ 142+ 22y + 7=0;
327+ 10zy + 8y? + 14z + 22y + 23=0.

XXXVIIL. (Pages 302—305.)
(££./6a, £314/6a); (*34/6a, +./6a).

XXXIX. (Pages 319—321.) |

Transform the equation of the previous example to Cartesian
Coordinates.
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XL. (Pages 331, 332.)
A hyperbola; (2,1); ¢'=-26.
An ellipse; (-3, -3); ¢/=-4. 3. A parabola.
A hyperbola; (-4, - %); ¢'=—46.
Two straight lines; (-4}, 1§); ¢’=0.
A hyperbola; (-4%, s%); ¢'=~ 7
(2z+8y-1) (4z-y+1)=0; 8z%+10xy -8y 2z +4y=0.
(y+2-2)(y-22-8)=0; y>-zy-222-5y+z+18=0.
(11z -2y + 4) (52 — 10y +4)=0;
5523 — 1202y + 20y + 64« — 48y + 32 =0.
192 + 24xy +y? - 222~ 6y +4=0;
1923 + 24zy + y3 - 22z — 6y + 8=0.

23 - y3=4a® 13. (az-by)3=(a? - %) (ay - bz).
("’ !I)’ 2(z+y) +4=0. 15. (zy+ab)tan(a-g)=bz~ay.
A 4 Z, 27 008 (o - p) =sin® (a - f). 17. A point.

Two sttmght lines. 19. A straight line and a parabola.

A straight line and a rectangular hyperbola.
A circle and a rectangular hyperbola.

A straight line and a circle.
Two imaginary straight lines.
A circle and a straight line. 25. A parabola.
A circle. 27. A hyperbola. 28. An ellipse.
XLI. (Pages 346—348.)
-1503 -23 ) - -
76" 169 9. Two coincident straight lines.

tan01= -3 tmﬂ,:g, Tl=~/3, and 1’,=4.

. 0,=45° 0,=135° 7r;=,/2, and 7r,=2.

tan0,=T+54/2; tanf,=7-54/2,

n=n/ 20v-9, r= /50040,

2. 29. /3 30. §/-3.
($?i’~/.71‘0—ﬁ 4_“*2—%/,./10 ); 3$4/2052,710.
3
aeivs Fegus)s avs
(-3+14/6, 3:14/6); 343

(~1£36, 1£3/6); 2
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XLII. (Pages 354, 3565.)
(1) 8; (2)3; (3)4; (4)2; (6) 4; (6)3; (7) 3.
Az+Hy=0 and Hz+By=0; H2=A4B, so that the conic is a
pair of parallel straight lines,
z(z+8y)=0; (3z—3y)*=0.

XLIII. (Pages 363, 364.)

A oonie touching S=0 where T'=0 touches it and having its
asymptotes parallel to those of S=0.

A conic such that the two parallel straight lines u=0 and
u+ k=0 pass through its intersections with S=0.

XLIV. (Pages 375—3T77.) s 66
(-1,5)and (4, -8). 7. (-4 -8 8. (;T )"

(-4, -4) and (-1, -1); 2+y+7=0 and z+y+3=0.

If P be the given point, C the centre of the given director circle,
and PCP' a diameter, the focus S is such that PS.PS is
constant.

If PP’ be the given diameter and S a focus then PS.P'S is

constant.
XLV. (Pages 383, 384.)

623+ 122y + Ty? - 122 - 13y =0.
The narrow ellipse (Art. 408), which is very nearly coincident with
the straight line BD, is one of the conics inscribed in the quadri-
lateral, and its centre is the middle point of BD. This middle
int, and similarly the middle points of 4C and OL, therefore
ie on the centre-locus.

XLVI. (Pages 390—392.)

Proceed as in Art. 418, and use, in addition, the second result
of Art. 412, Cor. 2. From the two results, thus obtained,
eliminate 3.

Take Lz+my—1=0 (Art. 412, Cor. 1) as a focal chord of the
ellipse.

If the normals are perpendicular, so also are the tangents; the
line Lz +m;y—1=0 is therefore the polar with respect to the
ellipse of a point (Ja’+b2coso, A/a*+b%sin 6) on the director
circle.

The triangle 4BC is a maximum triangle (Page 235, Ex. 15)
inscribed in the ellipse.
Use the notation of Art. 333,
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XLVII. (Pages 397, 398.)

The locus can be shewn to be a straight line which is perpendi-
cular to the given straight line; also the given straight line
touches one of the confocals and its pole with respect to that
oonfocal is its point of contact ; this point of oontact therefore
lies on the locus, which is therefore the normal.

As in Art. 866, use the Invariants of Art. 135,

XLVIIL (Pages 405—407.)

Two of the normals drawn from O coincide, since it is & centre of
curvature, The straight line Lz +m,y=1 (Art. 412) is therefore
a tangent to the ellipse at some point ¢ and hence, by Art. 412,
the equation to QR can be found in terms of ¢.

XLIX. (Pages 414—416.)

(by — ax - c)3=4ace. 2. z’+y’—c(z+y)+%’=0.

2
g"’ %,:1. 4. A parabola touching each of the two lines.

A central conic. 6. A parabola. 7. a?z3+d%2=cr
The line joining the foci is a particular case of the confocals and
the polar of O with respect to it is the major axis; the minor
axis is another particular case, so that two of the polars are lines
through C at right angles; also the tangents at O to the con-
focals through it are two of the polars, and these are at right
angles. Thus both C and O are on the directrix.

The crease is clearly the line bisecting at right angles the line
joining the initial position of O to the position whiclgm C ocoupies
when the paper is folded.

¥2;_';—°'=1—eoosaooso.
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